These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27001385)
1. Transport and uptake effects of marine complex lipid liposomes in small intestinal epithelial cell models. Du L; Yang YH; Xu J; Wang YM; Xue CH; Kurihara H; Takahashi K Food Funct; 2016 Apr; 7(4):1904-14. PubMed ID: 27001385 [TBL] [Abstract][Full Text] [Related]
2. Docosahexaenoic acid and eicosapentaenoic acid-enriched phosphatidylcholine liposomes enhance the permeability, transportation and uptake of phospholipids in Caco-2 cells. Hossain Z; Kurihara H; Hosokawa M; Takahashi K Mol Cell Biochem; 2006 Apr; 285(1-2):155-63. PubMed ID: 16477371 [TBL] [Abstract][Full Text] [Related]
3. Lipid Composition of Liposomal Membrane Largely Affects Its Transport and Uptake through Small Intestinal Epithelial Cell Models. Konishi K; Du L; Francius G; Linder M; Sugawara T; Kurihara H; Takahashi K Lipids; 2020 Nov; 55(6):671-682. PubMed ID: 32770855 [TBL] [Abstract][Full Text] [Related]
4. Glycosylceramides obtain from the starfish Asterias amurensis Lütken. Shah AK; Kinoshita M; Kurihara H; Ohnishi M; Takahashi K J Oleo Sci; 2008; 57(9):477-84. PubMed ID: 18685230 [TBL] [Abstract][Full Text] [Related]
5. Transepithelial Transport Route and Liposome Encapsulation of Milk-Derived ACE-Inhibitory Peptide Arg-Leu-Ser-Phe-Asn-Pro. Zhang T; Su M; Jiang X; Xue Y; Zhang J; Zeng X; Wu Z; Guo Y; Pan D J Agric Food Chem; 2019 May; 67(19):5544-5551. PubMed ID: 31007021 [TBL] [Abstract][Full Text] [Related]
6. The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice. Wu FJ; Xue Y; Liu XF; Xue CH; Wang JF; Du L; Takahashi K; Wang YM Neurochem Int; 2014 Jan; 64():9-17. PubMed ID: 24231470 [TBL] [Abstract][Full Text] [Related]
7. Phospholipids as multidrug resistance modulators of the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Lo YL Biochem Pharmacol; 2000 Nov; 60(9):1381-90. PubMed ID: 11008132 [TBL] [Abstract][Full Text] [Related]
8. Isolation of cytotoxic glucoerebrosides and long-chain bases from sea cucumber Cucumaria frondosa using high speed counter-current chromatography. Xu J; Guo S; Du L; Wang YM; Sugawara T; Hirata T; Xue CH J Oleo Sci; 2013; 62(3):133-42. PubMed ID: 23470440 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake of liposome consisting mainly of glucocerebroside from the starfish Asterias amurensis into Caco-2 cells. Yamaguchi R; Kanie Y; Kazamaki T; Kanie O; Shimizu Y Carbohydr Res; 2023 Oct; 532():108921. PubMed ID: 37562111 [TBL] [Abstract][Full Text] [Related]
10. A unique structural distribution pattern discovered for the cerebrosides from starfish Asterias amurensis. Yamaguchi R; Kanie Y; Kanie O; Shimizu Y Carbohydr Res; 2019 Feb; 473():115-122. PubMed ID: 30682532 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo evaluation of WGA-carbopol modified liposomes as carriers for oral peptide delivery. Makhlof A; Fujimoto S; Tozuka Y; Takeuchi H Eur J Pharm Biopharm; 2011 Feb; 77(2):216-24. PubMed ID: 21147220 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Bannunah AM; Vllasaliu D; Lord J; Stolnik S Mol Pharm; 2014 Dec; 11(12):4363-73. PubMed ID: 25327847 [TBL] [Abstract][Full Text] [Related]
13. The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo. Du L; Li ZJ; Xu J; Wang JF; Xue Y; Xue CH; Takahashi K; Wang YM J Oleo Sci; 2012; 61(6):321-30. PubMed ID: 22687777 [TBL] [Abstract][Full Text] [Related]
14. Tissue distribution of EDTA encapsulated within liposomes containing glycolipids or brain phospholipids. Jonah MM; Cerny EA; Rahman YE Biochim Biophys Acta; 1978 Jul; 541(3):321-33. PubMed ID: 96869 [TBL] [Abstract][Full Text] [Related]
15. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model. Kapitza SB; Michel BR; van Hoogevest P; Leigh ML; Imanidis G Eur J Pharm Biopharm; 2007 Apr; 66(1):146-58. PubMed ID: 17071065 [TBL] [Abstract][Full Text] [Related]
16. Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Hossain Z; Hosokawa M; Takahashi K Nutr Cancer; 2009; 61(1):123-30. PubMed ID: 19116882 [TBL] [Abstract][Full Text] [Related]
17. Improved delivery of cromolyn from oral proliposomal beads. Deshmukh DD; Ravis WR; Betageri GV Int J Pharm; 2008 Jun; 358(1-2):128-36. PubMed ID: 18400424 [TBL] [Abstract][Full Text] [Related]
18. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of iron-containing liposomes: their effect on soluble iron uptake by Caco-2 cells. Hermida LG; Roig A; Bregni C; Sabés-Xamaní M; Barnadas-Rodríguez R J Liposome Res; 2011 Sep; 21(3):203-12. PubMed ID: 20854064 [TBL] [Abstract][Full Text] [Related]
20. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Sadeghi AM; Dorkoosh FA; Avadi MR; Weinhold M; Bayat A; Delie F; Gurny R; Larijani B; Rafiee-Tehrani M; Junginger HE Eur J Pharm Biopharm; 2008 Sep; 70(1):270-8. PubMed ID: 18492606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]