These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27001489)

  • 1. Diet analysis of small mammal pests: A comparison of molecular and microhistological methods.
    Khanam S; Howitt R; Mushtaq M; Russell JC
    Integr Zool; 2016 Mar; 11(2):98-110. PubMed ID: 27001489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving PCR detection of prey in molecular diet studies: importance of group-specific primer set selection and extraction protocol performances.
    Zarzoso-Lacoste D; Corse E; Vidal E
    Mol Ecol Resour; 2013 Jan; 13(1):117-27. PubMed ID: 23134438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of faecal samples from birds to identify potential crop pests and useful biocontrol agents in natural areas.
    King RA; Symondson WO; Thomas RJ
    Bull Entomol Res; 2015 Jun; 105(3):261-72. PubMed ID: 25572526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An holistic ecological analysis of the diet of Cory's shearwaters using prey morphological characters and DNA barcoding.
    Alonso H; Granadeiro JP; Waap S; Xavier J; Symondson WO; Ramos JA; Catry P
    Mol Ecol; 2014 Aug; 23(15):3719-33. PubMed ID: 24806079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary competition between the alien Asian Musk Shrew (Suncus murinus) and a re-introduced population of Telfair's Skink (Leiolopisma telfairii).
    Brown DS; Burger R; Cole N; Vencatasamy D; Clare EL; Montazam A; Symondson WO
    Mol Ecol; 2014 Aug; 23(15):3695-705. PubMed ID: 24033506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests.
    Furlong MJ
    Insect Sci; 2015 Feb; 22(1):6-19. PubMed ID: 25081301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of annealing blocking primers versus restriction enzymes for characterization of generalist diets: unexpected prey revealed in the gut contents of two coral reef fish species.
    Leray M; Agudelo N; Mills SC; Meyer CP
    PLoS One; 2013; 8(4):e58076. PubMed ID: 23579925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid screening of invertebrate predators for multiple prey DNA targets.
    Harper GL; King RA; Dodd CS; Harwood JD; Glen DM; Bruford MW; Symondson WO
    Mol Ecol; 2005 Mar; 14(3):819-27. PubMed ID: 15723673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From puffins to plankton: a DNA-based analysis of a seabird food chain in the northern Gulf of Maine.
    Bowser AK; Diamond AW; Addison JA
    PLoS One; 2013; 8(12):e83152. PubMed ID: 24358258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces.
    Zeale MR; Butlin RK; Barker GL; Lees DC; Jones G
    Mol Ecol Resour; 2011 Mar; 11(2):236-44. PubMed ID: 21429129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular approach to identifying the natural prey of the African creeping water bug Naucoris, a potential reservoir of Mycobacterium ulcerans.
    Gamboa M; Kimbirauskas RK; Merritt RW; Monaghan MT
    J Insect Sci; 2012; 12():2. PubMed ID: 22934669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers.
    Waldner T; Traugott M
    Mol Ecol Resour; 2012 Jul; 12(4):669-75. PubMed ID: 22443278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus).
    Mallott EK; Garber PA; Malhi RS
    Am J Phys Anthropol; 2017 Feb; 162(2):241-254. PubMed ID: 27704526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex reactions for the molecular detection of predation on pest and nonpest invertebrates in agroecosystems.
    King RA; Moreno-Ripoll R; Agustí N; Shayler SP; Bell JR; Bohan DA; Symondson WO
    Mol Ecol Resour; 2011 Mar; 11(2):370-3. PubMed ID: 21429146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of the gut and its contents in prey as a source of cadmium to predators.
    Walker LA; Bailey LJ; Shore RF
    Environ Toxicol Chem; 2002 Jan; 21(1):76-80. PubMed ID: 11804064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA barcoding for biosecurity: case studies from the UK plant protection program.
    Hodgetts J; Ostojá-Starzewski JC; Prior T; Lawson R; Hall J; Boonham N
    Genome; 2016 Nov; 59(11):1033-1048. PubMed ID: 27792411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How important are seabirds in the diet of black rats on islands with a superpredator?
    Hervías S; Ceia FR; Pipa T; Nogales M; de Ybáñez RR; Ramos JA
    Zoology (Jena); 2014 Jun; 117(3):171-8. PubMed ID: 24726532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of diets for Largemouth and Smallmouth Bass in Eastern Lake Ontario using DNA barcoding and stable isotope analysis.
    Nelson EJH; Holden J; Eves R; Tufts B
    PLoS One; 2017; 12(8):e0181914. PubMed ID: 28771612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals.
    Arif IA; Khan HA; Al Sadoon M; Shobrak M
    Genet Mol Res; 2011 Oct; 10(4):3559-64. PubMed ID: 22057991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of seagrasses in the gut of a marine herbivorous fish using DNA barcoding and visual inspection techniques.
    Chelsky Budarf A; Burfeind DD; Loh WK; Tibbetts IR
    J Fish Biol; 2011 Jul; 79(1):112-21. PubMed ID: 21722114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.