BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27001516)

  • 1. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation.
    Basu A; Yap MN
    Nucleic Acids Res; 2016 Jun; 44(10):4881-93. PubMed ID: 27001516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus.
    Basu A; Shields KE; Eickhoff CS; Hoft DF; Yap MN
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30297357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation.
    LipoĊ„ska A; Yap MF
    mBio; 2021 Aug; 12(4):e0033421. PubMed ID: 34253058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus.
    Matzov D; Aibara S; Basu A; Zimmerman E; Bashan A; Yap MF; Amunts A; Yonath AE
    Nat Commun; 2017 Sep; 8(1):723. PubMed ID: 28959035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly of the
    Basu A; Yap MN
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8165-E8173. PubMed ID: 28894000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of two distinct types of 100S ribosome in bacteria.
    Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A
    Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF.
    Ueta M; Wada C; Wada A
    Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation.
    Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C
    FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in
    Basu A; Shields KE; Yap MF
    J Biol Chem; 2020 May; 295(18):6053-6063. PubMed ID: 32209660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli.
    Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A
    J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.
    Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A
    Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization.
    Usachev KS; Fatkhullin BF; Klochkova EA; Miftakhov AK; Golubev AA; Bikmullin AG; Nurullina LI; Garaeva NS; Islamov DR; Gabdulkhakov AG; Lekontseva NV; Tishchenko SV; Balobanov VA; Khusainov IS; Yusupov MM; Validov SZ
    J Struct Biol; 2020 Jan; 209(1):107408. PubMed ID: 31669310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli.
    Yoshida H; Maki Y; Kato H; Fujisawa H; Izutsu K; Wada C; Wada A
    J Biochem; 2002 Dec; 132(6):983-9. PubMed ID: 12473202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase.
    Yoshida H; Ueta M; Maki Y; Sakai A; Wada A
    Genes Cells; 2009 Feb; 14(2):271-80. PubMed ID: 19170772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome dimerization is essential for the efficient regrowth of Bacillus subtilis.
    Akanuma G; Kazo Y; Tagami K; Hiraoka H; Yano K; Suzuki S; Hanai R; Nanamiya H; Kato-Yamada Y; Kawamura F
    Microbiology (Reading); 2016 Mar; 162(3):448-458. PubMed ID: 26743942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli.
    Ueta M; Yoshida H; Wada C; Baba T; Mori H; Wada A
    Genes Cells; 2005 Dec; 10(12):1103-12. PubMed ID: 16324148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management.
    Gohara DW; Yap MF
    Curr Genet; 2018 Aug; 64(4):753-760. PubMed ID: 29243175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy.
    Kato T; Yoshida H; Miyata T; Maki Y; Wada A; Namba K
    Structure; 2010 Jun; 18(6):719-24. PubMed ID: 20541509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.