BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27001745)

  • 1. Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer.
    Hasani-Sadrabadi MM; Taranejoo S; Dashtimoghadam E; Bahlakeh G; Majedi FS; VanDersarl JJ; Janmaleki M; Sharifi F; Bertsch A; Hourigan K; Tayebi L; Renaud P; Jacob KI
    Adv Mater; 2016 Jun; 28(21):4134-41. PubMed ID: 27001745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.
    Li W; Liu D; Zhang H; Correia A; Mäkilä E; Salonen J; Hirvonen J; Santos HA
    Acta Biomater; 2017 Jan; 48():238-246. PubMed ID: 27815166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and reliable analysis of pH-responsive nanocarriers for drug delivery using microfluidic tools.
    García-Merino B; Bringas E; Ortiz I
    Int J Pharm; 2023 Aug; 643():123232. PubMed ID: 37460049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery.
    Khan IU; Stolch L; Serra CA; Anton N; Akasov R; Vandamme TF
    Int J Pharm; 2015 Jan; 478(1):78-87. PubMed ID: 25307961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Drug Delivery System Based on Biodegradable Organosilica Core-Shell Architectures.
    Li JL; Cheng YJ; Zhang C; Cheng H; Feng J; Zhuo RX; Zeng X; Zhang XZ
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5287-5295. PubMed ID: 29350909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.
    Alqahtani MS; Islam MS; Podaralla S; Kaushik RS; Reineke J; Woyengo T; Perumal O
    Mol Pharm; 2017 Mar; 14(3):757-769. PubMed ID: 28103046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-layer nanoparticle platform for cancer active targeting.
    Suh MS; Shen J; Kuhn LT; Burgess DJ
    Int J Pharm; 2017 Jan; 517(1-2):58-66. PubMed ID: 27923697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Fabrication of pH-Responsive Nanoparticles for Encapsulation and Colon-Target Release of Fucoxanthin.
    Liang D; Su W; Zhao X; Li J; Hua Z; Miao S; Tan M
    J Agric Food Chem; 2022 Jan; 70(1):124-135. PubMed ID: 34963047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of core-shell coordination polymer nanoparticles (CPNs) for pH-responsive controlled drug release.
    Xing L; Cao Y; Che S
    Chem Commun (Camb); 2012 Jun; 48(48):5995-7. PubMed ID: 22576702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin Nanocrystal/pH-Responsive Polyelectrolyte Multilayer Core-Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis.
    Oshi MA; Lee J; Naeem M; Hasan N; Kim J; Kim HJ; Lee EH; Jung Y; Yoo JW
    Biomacromolecules; 2020 Sep; 21(9):3571-3581. PubMed ID: 32701266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Responsive Core-Shell Structured Nanoparticles for Triple-Stage Targeted Delivery of Doxorubicin to Tumors.
    Han L; Tang C; Yin C
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23498-508. PubMed ID: 27558413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemo-drug Controlled-release Strategies of Nanocarrier in the Development of Cancer Therapeutics.
    Liu Y; Ou H; Pei X; Jiang B; Ma Y; Liu N; Wen C; Peng C; Hu X
    Curr Med Chem; 2021; 28(31):6307-6322. PubMed ID: 32503398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zwitterionic nanoparticles constructed with well-defined reduction-responsive shell and pH-sensitive core for "spatiotemporally pinpointed" drug delivery.
    Huang P; Liu J; Wang W; Li C; Zhou J; Wang X; Deng L; Kong D; Liu J; Dong A
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14631-43. PubMed ID: 25100635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug co-loading and pH-sensitive release core-shell nanoparticles via layer-by-layer assembly.
    Tian L; Yang J; Ji F; Liu Y; Yao F
    J Biomater Sci Polym Ed; 2014; 25(14-15):1573-89. PubMed ID: 24954168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug.
    Li D; Huang X; Wu Y; Li J; Cheng W; He J; Tian H; Huang Y
    Biomater Sci; 2016 Feb; 4(2):272-80. PubMed ID: 26484364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery.
    Nabid MR; Omrani I
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():532-7. PubMed ID: 27612744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell structure microcapsules with dual pH-responsive drug release function.
    Yang CH; Wang CY; Grumezescu AM; Wang AH; Hsiao CJ; Chen ZY; Huang KS
    Electrophoresis; 2014 Sep; 35(18):2673-80. PubMed ID: 24917513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.