BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27001857)

  • 1. Suramin inhibits cullin-RING E3 ubiquitin ligases.
    Wu K; Chong RA; Yu Q; Bai J; Spratt DE; Ching K; Lee C; Miao H; Tappin I; Hurwitz J; Zheng N; Shaw GS; Sun Y; Felsenfeld DP; Sanchez R; Zheng JN; Pan ZQ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2011-8. PubMed ID: 27001857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Cullin-RING E3 ubiquitin ligase-dependent ubiquitination by small molecule compounds.
    Wu K; DeVita RJ; Pan ZQ
    J Biol Chem; 2024 Mar; 300(3):105752. PubMed ID: 38354780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates.
    Kleiger G; Saha A; Lewis S; Kuhlman B; Deshaies RJ
    Cell; 2009 Nov; 139(5):957-68. PubMed ID: 19945379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity.
    Van Sant C; Hagglund R; Lopez P; Roizman B
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8815-20. PubMed ID: 11447293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat.
    Zhang X; Shi S; Su Y; Yang X; He S; Yang X; Wu J; Zhang J; Rao F
    J Biol Chem; 2020 Jul; 295(30):10281-10292. PubMed ID: 32493769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine.
    Sadowski M; Sarcevic B
    Cell Div; 2010 Aug; 5():19. PubMed ID: 20704751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases.
    Ohta T; Xiong Y
    Cancer Res; 2001 Feb; 61(4):1347-53. PubMed ID: 11245432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets?
    Lamsoul I; Uttenweiler-Joseph S; Moog-Lutz C; Lutz PG
    Biochimie; 2016 Mar; 122():339-47. PubMed ID: 26253693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions.
    Cai W; Yang H
    Cell Div; 2016; 11():7. PubMed ID: 27222660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34.
    Petroski MD; Deshaies RJ
    Cell; 2005 Dec; 123(6):1107-20. PubMed ID: 16360039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes.
    Hagglund R; Van Sant C; Lopez P; Roizman B
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):631-6. PubMed ID: 11805320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme.
    Ceccarelli DF; Tang X; Pelletier B; Orlicky S; Xie W; Plantevin V; Neculai D; Chou YC; Ogunjimi A; Al-Hakim A; Varelas X; Koszela J; Wasney GA; Vedadi M; Dhe-Paganon S; Cox S; Xu S; Lopez-Girona A; Mercurio F; Wrana J; Durocher D; Meloche S; Webb DR; Tyers M; Sicheri F
    Cell; 2011 Jun; 145(7):1075-87. PubMed ID: 21683433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cullin RING ligases.
    Hotton SK; Callis J
    Annu Rev Plant Biol; 2008; 59():467-89. PubMed ID: 18444905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression.
    Sadowski M; Mawson A; Baker R; Sarcevic B
    Biochem J; 2007 Aug; 405(3):569-81. PubMed ID: 17461777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start?
    Yu Q; Sun Y
    Drug Des Devel Ther; 2021; 15():1-8. PubMed ID: 33442232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Strategy to Track Lysine-48 Ubiquitination by Fluorescence Resonance Energy Transfer.
    Wu K; Pan ZQ
    Methods Mol Biol; 2021; 2267():91-102. PubMed ID: 33786787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases.
    Furukawa M; He YJ; Borchers C; Xiong Y
    Nat Cell Biol; 2003 Nov; 5(11):1001-7. PubMed ID: 14528312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Cullin7 E3 ubiquitin ligase--heterodimerization of cullin substrate receptors as a novel mechanism to regulate cullin E3 ligase activity.
    Ponyeam W; Hagen T
    Cell Signal; 2012 Jan; 24(1):290-5. PubMed ID: 21946088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity-induced activation of human Cdc34 through heterologous dimerization.
    Gazdoiu S; Yamoah K; Wu K; Escalante CR; Tappin I; Bermudez V; Aggarwal AK; Hurwitz J; Pan ZQ
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15053-8. PubMed ID: 16210246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiosensitization of Cancer Cells by Inactivation of Cullin-RING E3 Ubiquitin Ligases.
    Wei D; Morgan MA; Sun Y
    Transl Oncol; 2012 Oct; 5(5):305-12. PubMed ID: 23066438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.