BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27001894)

  • 1. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.
    Song YH; Shin E; Wang H; Nolan J; Low S; Parsons D; Zale S; Ashton S; Ashford M; Ali M; Thrasher D; Boylan N; Troiano G
    J Control Release; 2016 May; 229():106-119. PubMed ID: 27001894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting Counterions to Improve Ionized Hydrophilic Drug Encapsulation in Polymeric Nanoparticles.
    Dimiou S; McCabe J; Booth R; Booth J; Nidadavole K; Svensson O; Sparén A; Lindfors L; Paraskevopoulou V; Mead H; Coates L; Workman D; Martin D; Treacher K; Puri S; Taylor LS; Yang B
    Mol Pharm; 2023 Feb; 20(2):1138-1155. PubMed ID: 36653946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Therapeutic Effect of Aurora B Inhibition in Acute Myeloid Leukemia with AZD2811 Nanoparticles.
    Floc'h N; Ashton S; Taylor P; Trueman D; Harris E; Odedra R; Maratea K; Derbyshire N; Caddy J; Jacobs VN; Hattersley M; Wen S; Curtis NJ; Pilling JE; Pease EJ; Barry ST
    Mol Cancer Ther; 2017 Jun; 16(6):1031-1040. PubMed ID: 28292940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo.
    Ashton S; Song YH; Nolan J; Cadogan E; Murray J; Odedra R; Foster J; Hall PA; Low S; Taylor P; Ellston R; Polanska UM; Wilson J; Howes C; Smith A; Goodwin RJ; Swales JG; Strittmatter N; Takáts Z; Nilsson A; Andren P; Trueman D; Walker M; Reimer CL; Troiano G; Parsons D; De Witt D; Ashford M; Hrkach J; Zale S; Jewsbury PJ; Barry ST
    Sci Transl Med; 2016 Feb; 8(325):325ra17. PubMed ID: 26865565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive study of the drug delivery properties of poly(l-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice.
    Shalgunov V; Zaytseva-Zotova D; Zintchenko A; Levada T; Shilov Y; Andreyev D; Dzhumashev D; Metelkin E; Urusova A; Demin O; McDonnell K; Troiano G; Zale S; Safarovа E
    J Control Release; 2017 Sep; 261():31-42. PubMed ID: 28611009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.
    Han J; Michel AR; Lee HS; Kalscheuer S; Wohl A; Hoye TR; McCormick AV; Panyam J; Macosko CW
    Mol Pharm; 2015 Dec; 12(12):4329-35. PubMed ID: 26505116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of polymeric nanoparticles encapsulating a drug - pamoic acid ion pair by scanning transmission electron microscopy.
    Koniuch N; Ilett M; Collins SM; Hondow N; Brown A; Hughes L; Blade H
    Heliyon; 2023 Jun; 9(6):e16959. PubMed ID: 37360079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery.
    Ismail R; Phan TNQ; Laffleur F; Csóka I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2020 Jul; 152():10-17. PubMed ID: 32371152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospho-valproic acid inhibits pancreatic cancer growth in mice: enhanced efficacy by its formulation in poly-(L)-lactic acid-poly(ethylene glycol) nanoparticles.
    Mattheolabakis G; Wang R; Rigas B; Mackenzie GG
    Int J Oncol; 2017 Oct; 51(4):1035-1044. PubMed ID: 28849098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Dose and Schedule Effects of AZD2811 Nanoparticles Targeting Aurora B Kinase for Treatment of Diffuse Large B-cell Lymphoma.
    Floc'h N; Ashton S; Ferguson D; Taylor P; Carnevalli LS; Hughes AM; Harris E; Hattersley M; Wen S; Curtis NJ; Pilling JE; Young LA; Maratea K; Pease EJ; Barry ST
    Mol Cancer Ther; 2019 May; 18(5):909-919. PubMed ID: 30872381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation.
    Huo ZJ; Wang SJ; Wang ZQ; Zuo WS; Liu P; Pang B; Liu K
    Cancer Sci; 2015 Oct; 106(10):1429-37. PubMed ID: 26177628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release.
    Li Y; Wu H; Yang X; Jia M; Li Y; Huang Y; Lin J; Wu S; Hou Z
    Mol Pharm; 2014 Aug; 11(8):2915-27. PubMed ID: 24984984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing.
    Wibel R; Knoll P; Le-Vinh B; Kali G; Bernkop-Schnürch A
    Acta Biomater; 2022 May; 144():54-66. PubMed ID: 35292415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations.
    Lu HD; Rummaneethorn P; Ristroph KD; Prud'homme RK
    Mol Pharm; 2018 Jan; 15(1):216-225. PubMed ID: 29206046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy.
    Huo M; Zhu Q; Wu Q; Yin T; Wang L; Yin L; Zhou J
    J Pharm Sci; 2015 Jun; 104(6):2018-2028. PubMed ID: 25820241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.
    Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y
    Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.
    Tam YT; To KK; Chow AH
    Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy.
    Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X
    Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative and high drug loading of self-assembled prodrug with defined molecular structures for effective cancer therapy.
    Tang J; Zeng Z; Yan J; Chen C; Liu J; Feng X
    J Control Release; 2019 Aug; 307():90-97. PubMed ID: 31185233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel size-tunable nanocarrier system for targeted anticancer drug delivery.
    Li Y; Xiao K; Luo J; Lee J; Pan S; Lam KS
    J Control Release; 2010 Jun; 144(3):314-23. PubMed ID: 20211210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.