These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27001972)
1. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum. Zhang Y; Xu S; Chai C; Yang S; Jiang W; Minton NP; Gu Y FEMS Microbiol Lett; 2016 Apr; 363(8):. PubMed ID: 27001972 [TBL] [Abstract][Full Text] [Related]
2. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19. Cho C; Choe D; Jang YS; Kim KJ; Kim WJ; Cho BK; Papoutsakis ET; Bennett GN; Seung DY; Lee SY Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27918147 [TBL] [Abstract][Full Text] [Related]
3. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Jang YS; Malaviya A; Lee SY Biotechnol Bioeng; 2013 Jun; 110(6):1646-53. PubMed ID: 23335317 [TBL] [Abstract][Full Text] [Related]
4. Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum. Choi SJ; Lee J; Jang YS; Park JH; Lee SY; Kim IH J Microbiol; 2012 Dec; 50(6):1063-6. PubMed ID: 23274997 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. Hu S; Zheng H; Gu Y; Zhao J; Zhang W; Yang Y; Wang S; Zhao G; Yang S; Jiang W BMC Genomics; 2011 Feb; 12():93. PubMed ID: 21284892 [TBL] [Abstract][Full Text] [Related]
6. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Xu M; Zhao J; Yu L; Yang ST J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876 [TBL] [Abstract][Full Text] [Related]
7. Application of new metabolic engineering tools for Clostridium acetobutylicum. Lütke-Eversloh T Appl Microbiol Biotechnol; 2014 Jul; 98(13):5823-37. PubMed ID: 24816621 [TBL] [Abstract][Full Text] [Related]
8. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase. Sivagnanam K; Raghavan VG; Shah M; Hettich RL; Verberkmoes NC; Lefsrud MG J Ind Microbiol Biotechnol; 2012 Jun; 39(6):949-55. PubMed ID: 22395897 [TBL] [Abstract][Full Text] [Related]
9. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related]
10. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Gao X; Zhao H; Zhang G; He K; Jin Y Curr Microbiol; 2012 Aug; 65(2):128-32. PubMed ID: 22562601 [TBL] [Abstract][Full Text] [Related]
11. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Wu YD; Xue C; Chen LJ; Bai FW J Biotechnol; 2013 May; 165(1):18-21. PubMed ID: 23458964 [TBL] [Abstract][Full Text] [Related]
12. Solvents Production from a Mixture of Glucose and Xylose by Mixed Fermentation of Clostridium acetobutylicum and Saccharomyces cerevisiae. Qi GX; Xiong L; Huang C; Chen XF; Lin XQ; Chen XD Appl Biochem Biotechnol; 2015 Oct; 177(4):996-1002. PubMed ID: 26265395 [TBL] [Abstract][Full Text] [Related]
13. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Liao C; Seo SO; Celik V; Liu H; Kong W; Wang Y; Blaschek H; Jin YS; Lu T Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8505-10. PubMed ID: 26100881 [TBL] [Abstract][Full Text] [Related]
15. A universal mariner transposon system for forward genetic studies in the genus Clostridium. Zhang Y; Grosse-Honebrink A; Minton NP PLoS One; 2015; 10(4):e0122411. PubMed ID: 25836262 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of σF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and σG protein expression but does not block solvent formation. Jones SW; Tracy BP; Gaida SM; Papoutsakis ET J Bacteriol; 2011 May; 193(10):2429-40. PubMed ID: 21421765 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of Clostridium acetobutylicum. Wu Y; Xue C; Chen L; Yuan W; Bai F FEMS Microbiol Lett; 2016 Mar; 363(5):fnw023. PubMed ID: 26850441 [TBL] [Abstract][Full Text] [Related]
18. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product. Zhao X; Kasbi M; Chen J; Peres S; Jolicoeur M Biotechnol Bioeng; 2017 Dec; 114(12):2907-2919. PubMed ID: 28853155 [TBL] [Abstract][Full Text] [Related]
19. Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids. Wang L; Xia M; Zhang L; Chen H World J Microbiol Biotechnol; 2014 Jul; 30(7):1969-76. PubMed ID: 24510404 [TBL] [Abstract][Full Text] [Related]
20. Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Jones AJ; Fast AG; Clupper M; Papoutsakis ET Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]