These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 27002132)
1. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations. Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132 [TBL] [Abstract][Full Text] [Related]
2. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Alvarez-Añorve LI; Calcagno ML; Plumbridge J J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023 [TBL] [Abstract][Full Text] [Related]
3. Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine. Alvarez-Añorve LI; Bustos-Jaimes I; Calcagno ML; Plumbridge J J Bacteriol; 2009 Oct; 191(20):6401-7. PubMed ID: 19700525 [TBL] [Abstract][Full Text] [Related]
4. The Nitrogen Regulatory PII Protein (GlnB) and Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699 [TBL] [Abstract][Full Text] [Related]
5. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex. Liu C; Li D; Liang YH; Li LF; Su XD J Mol Biol; 2008 May; 379(1):73-81. PubMed ID: 18436239 [TBL] [Abstract][Full Text] [Related]
6. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Peri KG; Goldie H; Waygood EB Biochem Cell Biol; 1990 Jan; 68(1):123-37. PubMed ID: 2190615 [TBL] [Abstract][Full Text] [Related]
7. NagR Differentially Regulates the Expression of the glmS and nagAB Genes Required for Amino Sugar Metabolism by Streptococcus mutans. Zeng L; Burne RA J Bacteriol; 2015 Nov; 197(22):3533-44. PubMed ID: 26324448 [TBL] [Abstract][Full Text] [Related]
8. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
9. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer. Zonszein S; Álvarez-Añorve LI; Vázquez-Núñez RJ; Calcagno ML PLoS One; 2014; 9(5):e96536. PubMed ID: 24787711 [TBL] [Abstract][Full Text] [Related]
10. Structure and kinetics of a monomeric glucosamine 6-phosphate deaminase: missing link of the NagB superfamily? Vincent F; Davies GJ; Brannigan JA J Biol Chem; 2005 May; 280(20):19649-55. PubMed ID: 15755726 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. Plumbridge J J Mol Microbiol Biotechnol; 2015; 25(2-3):154-67. PubMed ID: 26159076 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity of quaternary structure of glucosamine-6-phosphate deaminase from Giardia lamblia. Kwiatkowska-Semrau K; Czarnecka J; Wojciechowski M; Milewski S Parasitol Res; 2015 Jan; 114(1):175-84. PubMed ID: 25326378 [TBL] [Abstract][Full Text] [Related]
14. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C. Hu Z; Patel IR; Mukherjee A BMC Microbiol; 2013 May; 13():94. PubMed ID: 23634833 [TBL] [Abstract][Full Text] [Related]
15. Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12. Plumbridge JA; Cochet O; Souza JM; Altamirano MM; Calcagno ML; Badet B J Bacteriol; 1993 Aug; 175(16):4951-6. PubMed ID: 8349539 [TBL] [Abstract][Full Text] [Related]
16. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms. Zeng L; Farivar T; Burne RA Appl Environ Microbiol; 2016 Jun; 82(12):3671-82. PubMed ID: 27084009 [TBL] [Abstract][Full Text] [Related]
17. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Świątek MA; Urem M; Tenconi E; Rigali S; van Wezel GP Bioengineered; 2012; 3(5):280-5. PubMed ID: 22892576 [TBL] [Abstract][Full Text] [Related]
18. The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Rodionova IA; Zhang Z; Mehla J; Goodacre N; Babu M; Emili A; Uetz P; Saier MH J Biol Chem; 2017 Aug; 292(34):14250-14257. PubMed ID: 28634232 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Rogers MJ; Ohgi T; Plumbridge J; Söll D Gene; 1988; 62(2):197-207. PubMed ID: 3284790 [TBL] [Abstract][Full Text] [Related]
20. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS. BATES CJ; PASTERNAK CA Biochem J; 1965 Jul; 96(1):147-54. PubMed ID: 14343123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]