BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27002155)

  • 21. Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, Paenibacillus larvae.
    Turner M; Tremblay O; Heney KA; Lugo MR; Ebeling J; Genersch E; Merrill AR
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31844879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards small molecule inhibitors of mono-ADP-ribosyltransferases.
    Ekblad T; Lindgren AE; Andersson CD; Caraballo R; Thorsell AG; Karlberg T; Spjut S; Linusson A; Schüler H; Elofsson M
    Eur J Med Chem; 2015 May; 95():546-51. PubMed ID: 25847771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish.
    Nakano T; Takahashi-Nakaguchi A; Yamamoto M; Watanabe M
    Curr Top Microbiol Immunol; 2015; 384():127-49. PubMed ID: 25033755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mono(ADP-ribosyl)ation of 2'-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly.
    Takamura-Enya T; Watanabe M; Totsuka Y; Kanazawa T; Matsushima-Hibiya Y; Koyama K; Sugimura T; Wakabayashi K
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12414-9. PubMed ID: 11592983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells.
    Stilla A; Di Paola S; Dani N; Krebs C; Arrizza A; Corda D; Haag F; Koch-Nolte F; Di Girolamo M
    Eur J Cell Biol; 2011 Aug; 90(8):665-77. PubMed ID: 21616557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K
    Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases.
    Fieldhouse RJ; Turgeon Z; White D; Merrill AR
    PLoS Comput Biol; 2010 Dec; 6(12):e1001029. PubMed ID: 21170356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ELISA method to estimate the mono ADP-ribosyltransferase activities: e.g in pertussis toxin and vaccines.
    Asokanathan C; Tierney S; Ball CR; Buckle G; Day A; Tanley S; Bristow A; Markey K; Xing D; Yuen CT
    Anal Biochem; 2018 Jan; 540-541():15-19. PubMed ID: 29108883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small-Molecule Screening Assay for Mono-ADP-Ribosyltransferases.
    Haikarainen T; Murthy S; Maksimainen MM; Lehtiö L
    Methods Mol Biol; 2018; 1813():237-244. PubMed ID: 30097872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ADP-ribosylating mosquitocidal toxin from Bacillus sphaericus: proteolytic activation, enzyme activity, and cytotoxic effects.
    Schirmer J; Just I; Aktories K
    J Biol Chem; 2002 Apr; 277(14):11941-8. PubMed ID: 11812773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analogs of TIQ-A as inhibitors of human mono-ADP-ribosylating PARPs.
    Maksimainen MM; Murthy S; Sowa ST; Galera-Prat A; Rolina E; Heiskanen JP; Lehtiö L
    Bioorg Med Chem; 2021 Dec; 52():116511. PubMed ID: 34801828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H; Koch-Nolte F; Marquez VE; Schulz GE
    Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3.
    Lindgren AE; Karlberg T; Thorsell AG; Hesse M; Spjut S; Ekblad T; Andersson CD; Pinto AF; Weigelt J; Hottiger MO; Linusson A; Elofsson M; Schüler H
    ACS Chem Biol; 2013 Aug; 8(8):1698-703. PubMed ID: 23742272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.