These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27002156)

  • 41. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of chimeric chemoreceptors in Bacillus subtilis reveals a role for CheD in the function of the McpC HAMP domain.
    Kristich CJ; Ordal GW
    J Bacteriol; 2004 Sep; 186(17):5950-5. PubMed ID: 15317802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SwrAA activates poly-gamma-glutamate synthesis in addition to swarming in Bacillus subtilis.
    Osera C; Amati G; Calvio C; Galizzi A
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2282-2287. PubMed ID: 19389763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168.
    Lin Y; Hansen JN
    J Bacteriol; 1995 Dec; 177(23):6874-80. PubMed ID: 7592481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of cell shape and elongation by the rodA gene in Bacillus subtilis.
    Henriques AO; Glaser P; Piggot PJ; Moran CP
    Mol Microbiol; 1998 Apr; 28(2):235-47. PubMed ID: 9622350
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression.
    Yaskowiak ES; March PE
    Mol Microbiol; 1995 Mar; 15(5):943-53. PubMed ID: 7596295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon.
    Calvio C; Celandroni F; Ghelardi E; Amati G; Salvetti S; Ceciliani F; Galizzi A; Senesi S
    J Bacteriol; 2005 Aug; 187(15):5356-66. PubMed ID: 16030230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMR and crystallographic structural studies of the Elongation factor P from Staphylococcus aureus.
    Golubev A; Fatkhullin B; Gabdulkhakov A; Bikmullin A; Nurullina L; Garaeva N; Islamov D; Klochkova E; Klochkov V; Aganov A; Khusainov I; Validov S; Yusupova G; Yusupov M; Usachev K
    Eur Biophys J; 2020 May; 49(3-4):223-230. PubMed ID: 32152681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The C-Terminal Region of Bacillus subtilis SwrA Is Required for Activity and Adaptor-Dependent LonA Proteolysis.
    Hughes AC; Subramanian S; Dann CE; Kearns DB
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29311275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elongation factor P controls translation of the mgtA gene encoding a Mg
    Choi E; Nam D; Choi J; Park S; Lee JS; Lee EJ
    Microbiologyopen; 2019 Apr; 8(4):e00680. PubMed ID: 29949242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis.
    Tran LS; Nagai T; Itoh Y
    Mol Microbiol; 2000 Sep; 37(5):1159-71. PubMed ID: 10972833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elongation factor P: Function and effects on bacterial fitness.
    Doerfel LK; Rodnina MV
    Biopolymers; 2013 Nov; 99(11):837-45. PubMed ID: 23828669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis.
    Ingham CJ; Dennis J; Furneaux PA
    Mol Microbiol; 1999 Jan; 31(2):651-63. PubMed ID: 10027981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. YfmK is an N
    Carabetta VJ; Greco TM; Cristea IM; Dubnau D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3752-3757. PubMed ID: 30808761
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elongation factor Ts from Thermus thermophilus-- overproduction in Escherichia coli, quaternary structure and interaction with elongation factor Tu.
    Blank J; Nock S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Feb; 236(1):222-7. PubMed ID: 8617268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the gene encoding the mitochondrial elongation factor G in mammals.
    Barker C; Makris A; Patriotis C; Bear SE; Tsichlis PN
    Nucleic Acids Res; 1993 Jun; 21(11):2641-7. PubMed ID: 8332461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues.
    Doerfel LK; Wohlgemuth I; Kothe C; Peske F; Urlaub H; Rodnina MV
    Science; 2013 Jan; 339(6115):85-8. PubMed ID: 23239624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM.
    Peil L; Starosta AL; Virumäe K; Atkinson GC; Tenson T; Remme J; Wilson DN
    Nat Chem Biol; 2012 Aug; 8(8):695-7. PubMed ID: 22706199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis.
    Tseng CL; Shaw GC
    J Bacteriol; 2008 Mar; 190(5):1561-7. PubMed ID: 18156261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli.
    Bussey LB; Switzer RL
    J Bacteriol; 1993 Oct; 175(19):6348-53. PubMed ID: 8407808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.