BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27002244)

  • 1. Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper.
    Girotto E; Ceretta CA; Rossato LV; Farias JG; Brunetto G; Miotto A; Tiecher TL; de Conti L; Lourenzi CR; Schmatz R; Giachini A; Nicoloso FT
    Plant Physiol Biochem; 2016 Jun; 103():199-207. PubMed ID: 27002244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants.
    Girotto E; Ceretta CA; Brunetto G; Miotto A; Tiecher TL; De Conti L; Lourenzi CR; Lorensini F; Gubiani PI; da Silva LS; Nicoloso FT
    Environ Monit Assess; 2014 Dec; 186(12):9051-63. PubMed ID: 25245214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc.
    Tiecher TL; Tiecher T; Ceretta CA; Ferreira PA; Nicoloso FT; Soriani HH; Tassinari A; Paranhos JT; De Conti L; Brunetto G
    Plant Physiol Biochem; 2016 Sep; 106():253-63. PubMed ID: 27209215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper.
    De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G
    Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses.
    Tiecher TL; Ceretta CA; Tiecher T; Ferreira PA; Nicoloso FT; Soriani HH; Rossato LV; Mimmo T; Cesco S; Lourenzi CR; Giachini AJ; Brunetto G
    Ecotoxicol Environ Saf; 2016 Jul; 129():109-19. PubMed ID: 27011111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of copper availability to plants in copper-contaminated vineyard soils.
    Brun LA; Maillet J; Hinsinger P; Pépin M
    Environ Pollut; 2001; 111(2):293-302. PubMed ID: 11202733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils.
    Malagoli M; Rossignolo V; Salvalaggio N; Schiavon M
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3294-303. PubMed ID: 24234763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity.
    Marastoni L; Tauber P; Pii Y; Valentinuzzi F; Astolfi S; Simoni A; Brunetto G; Cesco S; Mimmo T
    Ecotoxicol Environ Saf; 2019 Oct; 182():109430. PubMed ID: 31306921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of 'Red Niagara' plantlets.
    Ambrosini VG; Rosa DJ; Bastos de Melo GW; Zalamena J; Cella C; Simão DG; Souza da Silva L; Pessoa Dos Santos H; Toselli M; Tiecher TL; Brunetto G
    Plant Physiol Biochem; 2018 Jul; 128():89-98. PubMed ID: 29772492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions.
    Palanivel TM; Pracejus B; Victor R
    Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants.
    Gomes DG; Lopes-Oliveira PJ; Debiasi TV; da Cunha LS; Oliveira HC
    Planta; 2021 Jan; 253(2):43. PubMed ID: 33479798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.
    Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA
    Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil.
    Nogueirol RC; Alleoni LR; Nachtigall GR; de Melo GW
    J Hazard Mater; 2010 Sep; 181(1-3):931-7. PubMed ID: 20579811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area.
    Chaignon V; Sanchez-Neira I; Herrmann P; Jaillard B; Hinsinger P
    Environ Pollut; 2003; 123(2):229-38. PubMed ID: 12628202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper fungicide residues in Australian vineyard soils.
    Wightwick AM; Mollah MR; Partington DL; Allinson G
    J Agric Food Chem; 2008 Apr; 56(7):2457-64. PubMed ID: 18321047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-regional variability in environmental availability of fungicide derived copper in vineyard soils: an Australian case study.
    Wightwick AM; Salzman SA; Reichman SM; Allinson G; Menzies NW
    J Agric Food Chem; 2010 Jan; 58(1):449-57. PubMed ID: 20000746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping.
    Marastoni L; Sandri M; Pii Y; Valentinuzzi F; Brunetto G; Cesco S; Mimmo T
    Chemosphere; 2019 Jan; 214():563-578. PubMed ID: 30286423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil.
    Rehman M; Maqbool Z; Peng D; Liu L
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5851-5861. PubMed ID: 30613880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils.
    Andreazza R; Bortolon L; Pieniz S; Bento FM; Camargo FA
    Braz J Biol; 2015 Nov; 75(4):868-77. PubMed ID: 26675903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).
    Sapre S; Gontia-Mishra I; Tiwari S
    Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.