BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 27002795)

  • 1. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements.
    Nedergaard NJ; Robinson MA; Eusterwiemann E; Drust B; Lisboa PJ; Vanrenterghem J
    Int J Sports Physiol Perform; 2017 Jan; 12(1):18-26. PubMed ID: 27002795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-body biomechanical load in running-based sports: The validity of estimating ground reaction forces from segmental accelerations.
    Verheul J; Gregson W; Lisboa P; Vanrenterghem J; Robinson MA
    J Sci Med Sport; 2019 Jun; 22(6):716-722. PubMed ID: 30594457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot accelerations are larger than tibia accelerations during sprinting when measured with inertial measurement units.
    Glassbrook DJ; Fuller JT; Alderson JA; Doyle TLA
    J Sports Sci; 2020 Feb; 38(3):248-255. PubMed ID: 31726955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Trunk-mounted Accelerometer to Measure Peak Impacts during Team Sport Movements.
    Wundersitz DW; Gastin PB; Robertson S; Davey PC; Netto KJ
    Int J Sports Med; 2015 Aug; 36(9):742-6. PubMed ID: 25806591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model.
    Nedergaard NJ; Verheul J; Drust B; Etchells T; Lisboa P; Robinson MA; Vanrenterghem J
    PeerJ; 2018; 6():e6105. PubMed ID: 30595981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying generalised segmental acceleration patterns that contribute to ground reaction force features across different running tasks.
    Verheul J; Warmenhoven J; Lisboa P; Gregson W; Vanrenterghem J; Robinson MA
    J Sci Med Sport; 2019 Dec; 22(12):1355-1360. PubMed ID: 31445948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the correlations between impact loading rates and peak accelerations measured at two different body sites: Intra- and inter-subject analysis.
    Zhang JH; An WW; Au IP; Chen TL; Cheung RT
    Gait Posture; 2016 May; 46():53-6. PubMed ID: 27131177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of accelerometry to classify activity beneficial to bone in premenopausal women.
    Stiles VH; Griew PJ; Rowlands AV
    Med Sci Sports Exerc; 2013 Dec; 45(12):2353-61. PubMed ID: 23698245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibial impact accelerations in gait of primary school children: The effect of age and speed.
    Tirosh O; Orland G; Eliakim A; Nemet D; Steinberg N
    Gait Posture; 2017 Sep; 57():265-269. PubMed ID: 28683418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    J Neuroeng Rehabil; 2014 Dec; 11():162. PubMed ID: 25495782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caution using data from triaxial accelerometers housed in player tracking units during running.
    Edwards S; White S; Humphreys S; Robergs R; O'Dwyer N
    J Sports Sci; 2019 Apr; 37(7):810-818. PubMed ID: 30306824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes.
    Johnson CD; Outerleys J; Davis IS
    J Biomech; 2021 Mar; 117():110250. PubMed ID: 33486264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.
    Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ
    Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Explosive Actions in International Women's Soccer.
    Meylan C; Trewin J; McKean K
    Int J Sports Physiol Perform; 2017 Mar; 12(3):310-315. PubMed ID: 27295719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact Accelerations of Barefoot and Shod Running.
    Thompson M; Seegmiller J; McGowan CP
    Int J Sports Med; 2016 May; 37(5):364-8. PubMed ID: 26837933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of a Trunk-Mounted Accelerometer to Measure Physical Collisions in Contact Sports.
    Wundersitz DW; Gastin PB; Robertson SJ; Netto KJ
    Int J Sports Physiol Perform; 2015 Sep; 10(6):681-6. PubMed ID: 25849648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of lower-limb asymmetry in professional rugby league: a technical note describing the use of inertial measurement units.
    Glassbrook DJ; Fuller JT; Alderson JA; Doyle TLA
    PeerJ; 2020; 8():e9366. PubMed ID: 32612890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.
    Kawamori N; Nosaka K; Newton RU
    J Strength Cond Res; 2013 Mar; 27(3):568-73. PubMed ID: 22531618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents.
    Brailey G; Metcalf B; Price L; Cumming S; Stiles V
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.