These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27002805)

  • 81. DNA methylation in a sea lamprey vasotocin receptor gene promoter correlates with tissue- and life-stage-specific mRNA expression.
    Mayasich SA; Bemis LT; Clarke BL
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Dec; 202():56-66. PubMed ID: 27497665
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Claudins as tight junction proteins: the molecular element of paracellular transport].
    Markov AG
    Ross Fiziol Zh Im I M Sechenova; 2013 Feb; 99(2):175-95. PubMed ID: 23650732
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The role of claudin-based tight junctions in morphogenesis.
    Furuse M; Moriwaki K
    Ann N Y Acad Sci; 2009 May; 1165():58-61. PubMed ID: 19538288
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates.
    Kollitz EM; Zhang G; Hawkins MB; Whitfield GK; Reif DM; Kullman SW
    PLoS One; 2015; 10(4):e0122853. PubMed ID: 25855982
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus).
    Pérez-Fernández J; Megías M; Pombal MA
    J Comp Neurol; 2014 Apr; 522(5):1132-54. PubMed ID: 24127055
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Placental claudin expression and its regulation by endogenous sex steroid hormones.
    Ahn C; Yang H; Lee D; An BS; Jeung EB
    Steroids; 2015 Aug; 100():44-51. PubMed ID: 25982333
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A fate-map for cranial sensory ganglia in the sea lamprey.
    Modrell MS; Hockman D; Uy B; Buckley D; Sauka-Spengler T; Bronner ME; Baker CV
    Dev Biol; 2014 Jan; 385(2):405-16. PubMed ID: 24513489
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin.
    Feiner N; Murakami Y; Breithut L; Mazan S; Meyer A; Kuraku S
    Genome Biol Evol; 2013; 5(8):1485-502. PubMed ID: 23843192
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.
    Du K; Zhong Z; Fang C; Dai W; Shen Y; Gan X; He S
    Dev Comp Immunol; 2018 Apr; 81():324-333. PubMed ID: 29253557
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Molecular Evolution of Transforming Growth Factor-β (TGF-β) Gene Family and the Functional Characterization of Lamprey TGF-β2.
    Liu S; Guo J; Cheng X; Li W; Lyu S; Chen X; Li Q; Wang H
    Front Immunol; 2022; 13():836226. PubMed ID: 35309318
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Global level of methylation in the sea lamprey (jawless vertebrate) genome is intermediate between invertebrate and jawed vertebrate genomes.
    Zhang Z; Liu G; Zhou Z; Su Z; Gu X
    J Exp Zool B Mol Dev Evol; 2024 Jul; 342(5):391-397. PubMed ID: 38497317
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Insights from a sea lamprey into the evolution of neural crest gene regulatory network.
    Sauka-Spengler T; Bronner-Fraser M
    Biol Bull; 2008 Jun; 214(3):303-14. PubMed ID: 18574106
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Phylogenetic analyses uncover a novel clade of transferrin in nonmammalian vertebrates.
    Mohd-Padil H; Mohd-Adnan A; Gabaldón T
    Mol Biol Evol; 2013 Apr; 30(4):894-905. PubMed ID: 23258311
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans.
    Simske JS
    Tissue Barriers; 2013 Jul; 1(3):e25502. PubMed ID: 24665403
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.
    Cattell M; Lai S; Cerny R; Medeiros DM
    PLoS One; 2011; 6(7):e22474. PubMed ID: 21799866
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Comprehensive Evolutionary Analysis of Lamprey TNFR-Associated Factors (TRAFs) and Receptor-Interacting Protein Kinase (RIPKs) and Insights Into the Functional Characterization of TRAF3/6 and RIPK1.
    Hou J; Pang Y; Li Q
    Front Immunol; 2020; 11():663. PubMed ID: 32373123
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation.
    Bedois AMH; Parker HJ; Price AJ; Morrison JA; Bronner ME; Krumlauf R
    Nat Commun; 2024 Feb; 15(1):1538. PubMed ID: 38378737
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates.
    Grus WE; Zhang J
    Mol Biol Evol; 2009 Feb; 26(2):407-19. PubMed ID: 19008528
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Claudin family members exhibit unique temporal and spatial expression boundaries in the chick embryo.
    Collins MM; Baumholtz AI; Ryan AK
    Tissue Barriers; 2013 Jul; 1(3):e24517. PubMed ID: 24665397
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution.
    Root ZD; Allen C; Gould C; Brewer M; Jandzik D; Medeiros DM
    Front Cell Dev Biol; 2022; 10():809979. PubMed ID: 35242758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.