These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27003084)
1. Continuous flow electrocoagulation in the treatment of wastewater from dairy industries. Benazzi TL; Di Luccio M; Dallago RM; Steffens J; Mores R; Do Nascimento MS; Krebs J; Ceni G Water Sci Technol; 2016; 73(6):1418-25. PubMed ID: 27003084 [TBL] [Abstract][Full Text] [Related]
2. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater. Ates H; Dizge N; Yatmaz HC Water Sci Technol; 2017 Jan; 75(1-2):141-154. PubMed ID: 28067654 [TBL] [Abstract][Full Text] [Related]
3. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Akansha J; Nidheesh PV; Gopinath A; Anupama KV; Suresh Kumar M Chemosphere; 2020 Aug; 253():126652. PubMed ID: 32272308 [TBL] [Abstract][Full Text] [Related]
4. Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes. Borbón B; Oropeza-Guzman MT; Brillas E; Sirés I Environ Sci Pollut Res Int; 2014; 21(14):8573-84. PubMed ID: 24671400 [TBL] [Abstract][Full Text] [Related]
5. Treatment of wastewater from the dairy industry using electroflocculation and solid whey recovery. Melchiors MS; Piovesan M; Becegato VR; Becegato VA; Tambourgi EB; Paulino AT J Environ Manage; 2016 Nov; 182():574-580. PubMed ID: 27543752 [TBL] [Abstract][Full Text] [Related]
6. Comparative evaluation between Taguchi method and response surface method for optimization of electrocoagulation process in the context of treatment of dairy industry wastewater. K PN; Pattnaik BK; Das S Environ Monit Assess; 2024 Jun; 196(7):663. PubMed ID: 38922358 [TBL] [Abstract][Full Text] [Related]
7. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique. El-Ashtoukhy ES; Amin NK; Fouad YO Environ Monit Assess; 2015 Oct; 187(10):628. PubMed ID: 26373303 [TBL] [Abstract][Full Text] [Related]
8. Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation. Yılmaz S; Gerek EE; Yavuz Y; Koparal AS Water Sci Technol; 2018 Dec; 78(12):2542-2552. PubMed ID: 30767919 [TBL] [Abstract][Full Text] [Related]
9. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Esfandyari Y; Mahdavi Y; Seyedsalehi M; Hoseini M; Safari GH; Ghozikali MG; Kamani H; Jaafari J Environ Sci Pollut Res Int; 2015 Apr; 22(8):6288-97. PubMed ID: 25408073 [TBL] [Abstract][Full Text] [Related]
10. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation. Guvenc SY; Okut Y; Ozak M; Haktanir B; Bilgili MS Water Sci Technol; 2017 Feb; 75(3-4):833-846. PubMed ID: 28234284 [TBL] [Abstract][Full Text] [Related]
11. Industrial wastewater treatment using magnesium electrocoagulation in batch and continuous mode. Carmona-Carmona PF; Linares-Hernández I; Teutli-Sequeira EA; López-Rebollar BM; Álvarez-Bastida C; Mier-Quiroga MLA; Vázquez-Mejía G; Martínez-Miranda V J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(3):269-288. PubMed ID: 33499749 [TBL] [Abstract][Full Text] [Related]
12. Optimizing electrocoagulation process using experimental design for COD removal from unsanitary landfill leachate. Ogedey A; Tanyol M Water Sci Technol; 2017 Dec; 76(11-12):2907-2917. PubMed ID: 29210678 [TBL] [Abstract][Full Text] [Related]
13. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor. Orssatto F; Ferreira Tavares MH; Manente da Silva F; Eyng E; Farias Biassi B; Fleck L Environ Technol; 2017 Oct; 38(19):2465-2475. PubMed ID: 27892816 [TBL] [Abstract][Full Text] [Related]
14. COD removal from leachate by electrocoagulation process: treatment with monopolar electrodes in parallel connection. Tanyol M; Ogedey A; Oguz E Water Sci Technol; 2018 Jan; 77(1-2):177-186. PubMed ID: 29339616 [TBL] [Abstract][Full Text] [Related]
15. Treatment of the baker's yeast wastewater by electrocoagulation. Kobya M; Delipinar S J Hazard Mater; 2008 Jun; 154(1-3):1133-40. PubMed ID: 18082942 [TBL] [Abstract][Full Text] [Related]
16. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Naje AS; Chelliapan S; Zakaria Z; Abbas SA J Environ Manage; 2016 Jul; 176():34-44. PubMed ID: 27039362 [TBL] [Abstract][Full Text] [Related]
17. Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor. GilPavas E; Arbeláez-Castaño P; Medina J; Acosta DA Water Sci Technol; 2017 Nov; 76(9-10):2515-2525. PubMed ID: 29144309 [TBL] [Abstract][Full Text] [Related]
18. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597 [TBL] [Abstract][Full Text] [Related]
19. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Asfaha YG; Zewge F; Yohannes T; Kebede S Chemosphere; 2022 Sep; 302():134706. PubMed ID: 35523291 [TBL] [Abstract][Full Text] [Related]
20. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis. Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]