These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 27003126)
1. Role of charged lipids in membrane structures - Insight given by simulations. Pöyry S; Vattulainen I Biochim Biophys Acta; 2016 Oct; 1858(10):2322-2333. PubMed ID: 27003126 [TBL] [Abstract][Full Text] [Related]
2. Non-Brownian diffusion in lipid membranes: Experiments and simulations. Metzler R; Jeon JH; Cherstvy AG Biochim Biophys Acta; 2016 Oct; 1858(10):2451-2467. PubMed ID: 26826272 [TBL] [Abstract][Full Text] [Related]
3. Force Field Development for Lipid Membrane Simulations. Lyubartsev AP; Rabinovich AL Biochim Biophys Acta; 2016 Oct; 1858(10):2483-2497. PubMed ID: 26766518 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling of lipid probes and their influence on the membrane. Faller R Biochim Biophys Acta; 2016 Oct; 1858(10):2353-2361. PubMed ID: 26891817 [TBL] [Abstract][Full Text] [Related]
9. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
10. Effects of protein crowding on membrane systems. Guigas G; Weiss M Biochim Biophys Acta; 2016 Oct; 1858(10):2441-2450. PubMed ID: 26724385 [TBL] [Abstract][Full Text] [Related]
11. Functionalized lipids and surfactants for specific applications. Kepczynski M; Róg T Biochim Biophys Acta; 2016 Oct; 1858(10):2362-2379. PubMed ID: 26946243 [TBL] [Abstract][Full Text] [Related]
12. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Siani P; de Souza RM; Dias LG; Itri R; Khandelia H Biochim Biophys Acta; 2016 Oct; 1858(10):2498-2511. PubMed ID: 27058982 [TBL] [Abstract][Full Text] [Related]
13. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Bunker A; Magarkar A; Viitala T Biochim Biophys Acta; 2016 Oct; 1858(10):2334-2352. PubMed ID: 26915693 [TBL] [Abstract][Full Text] [Related]
14. Membrane pore formation in atomistic and coarse-grained simulations. Kirsch SA; Böckmann RA Biochim Biophys Acta; 2016 Oct; 1858(10):2266-2277. PubMed ID: 26748016 [TBL] [Abstract][Full Text] [Related]
16. Sampling errors in free energy simulations of small molecules in lipid bilayers. Neale C; Pomès R Biochim Biophys Acta; 2016 Oct; 1858(10):2539-2548. PubMed ID: 26952019 [TBL] [Abstract][Full Text] [Related]
17. Efficient preparation and analysis of membrane and membrane protein systems. Javanainen M; Martinez-Seara H Biochim Biophys Acta; 2016 Oct; 1858(10):2468-2482. PubMed ID: 26947184 [TBL] [Abstract][Full Text] [Related]
18. Encapsulated membrane proteins: A simplified system for molecular simulation. Lee SC; Khalid S; Pollock NL; Knowles TJ; Edler K; Rothnie AJ; R T Thomas O; Dafforn TR Biochim Biophys Acta; 2016 Oct; 1858(10):2549-2557. PubMed ID: 26946242 [TBL] [Abstract][Full Text] [Related]
19. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Grouleff J; Irudayam SJ; Skeby KK; Schiøtt B Biochim Biophys Acta; 2015 Sep; 1848(9):1783-95. PubMed ID: 25839353 [TBL] [Abstract][Full Text] [Related]
20. Gold nanoparticles in model biological membranes: A computational perspective. Rossi G; Monticelli L Biochim Biophys Acta; 2016 Oct; 1858(10):2380-2389. PubMed ID: 27060434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]