BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27003408)

  • 1. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion.
    Mukhamedshina YO; Garanina EE; Masgutova GA; Galieva LR; Sanatova ER; Chelyshev YA; Rizvanov AA
    PLoS One; 2016; 11(3):e0151745. PubMed ID: 27003408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes.
    Mukhamedshina YO; Gilazieva ZE; Arkhipova SS; Galieva LR; Garanina EE; Shulman AA; Yafarova GG; Chelyshev YA; Shamsutdinova NV; Rizvanov AA
    Neural Plast; 2017; 2017():9857918. PubMed ID: 28421147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenoviral vector carrying glial cell-derived neurotrophic factor for direct gene therapy in comparison with human umbilical cord blood cell-mediated therapy of spinal cord injury in rat.
    Mukhamedshina YO; Shaymardanova GF; Garanina ЕЕ; Salafutdinov II; Rizvanov АА; Islamov RR; Chelyshev YA
    Spinal Cord; 2016 May; 54(5):347-59. PubMed ID: 26415641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of direct and cell-mediated triple-gene therapy in spinal cord injury in rats.
    Islamov RR; Izmailov AA; Sokolov ME; Fadeev PO; Bashirov FV; Eremeev AA; Shaymardanova GF; Shmarov MM; Naroditskiy BS; Chelyshev YA; Lavrov IA; Palotás A
    Brain Res Bull; 2017 Jun; 132():44-52. PubMed ID: 28529158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot study of cell-mediated gene therapy for spinal cord injury in mini pigs.
    Islamov RR; Sokolov ME; Bashirov FV; Fadeev FO; Shmarov MM; Naroditskiy BS; Povysheva TV; Shaymardanova GF; Yakupov RA; Chelyshev YA; Lavrov IA
    Neurosci Lett; 2017 Mar; 644():67-75. PubMed ID: 28213069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors.
    Kao CH; Chen SH; Chio CC; Lin MT
    Shock; 2008 Jan; 29(1):49-55. PubMed ID: 17666954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of transplantation of human umbilical cord blood mononuclear cells, expressing VEGF and FGF2 genes, into the area of spinal cord traumatic lesion].
    Shaĭmardanova GF; Mukhamedshina IaO; rizvanov AA; Salafutdinov II; Chelyshev IuA
    Morfologiia; 2012; 142(4):31-6. PubMed ID: 23236888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat.
    Markosyan V; Safiullov Z; Izmailov A; Fadeev F; Sokolov M; Kuznetsov M; Trofimov D; Kim E; Kundakchyan G; Gibadullin A; Salafutdinov I; Nurullin L; Bashirov F; Islamov R
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment.
    Islamov R; Bashirov F; Fadeev F; Shevchenko R; Izmailov A; Markosyan V; Sokolov M; Kuznetsov M; Davleeva M; Garifulin R; Salafutdinov I; Nurullin L; Chelyshev Y; Lavrov I
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury.
    Deng LX; Deng P; Ruan Y; Xu ZC; Liu NK; Wen X; Smith GM; Xu XM
    J Neurosci; 2013 Mar; 33(13):5655-67. PubMed ID: 23536080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats.
    Do-Thi A; Perrin FE; Desclaux M; Saillour P; Amar L; Privat A; Mallet J
    J Chem Neuroanat; 2016 Oct; 76(Pt A):48-60. PubMed ID: 26744118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgene-mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion.
    Koelsch A; Feng Y; Fink DJ; Mata M
    J Neurochem; 2010 Apr; 113(1):143-52. PubMed ID: 20132484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.
    Tom VJ; Sandrow-Feinberg HR; Miller K; Santi L; Connors T; Lemay MA; Houlé JD
    J Neurosci; 2009 Nov; 29(47):14881-90. PubMed ID: 19940184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.