BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27003505)

  • 1. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.
    Mahaffee WF; Stoll R
    Phytopathology; 2016 May; 106(5):420-31. PubMed ID: 27003505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry.
    Carisse O; Morissette-Thomas V; Van der Heyden H
    Phytopathology; 2013 Aug; 103(8):811-21. PubMed ID: 23837544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highways in the sky: scales of atmospheric transport of plant pathogens.
    Schmale DG; Ross SD
    Annu Rev Phytopathol; 2015; 53():591-611. PubMed ID: 26047561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCR to predict risk of airborne disease.
    West JS; Atkins SD; Emberlin J; Fitt BD
    Trends Microbiol; 2008 Aug; 16(8):380-7. PubMed ID: 18595713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a TaqMan real-time PCR assay for quantification of airborne conidia of Botrytis squamosa and management of botrytis leaf blight of onion.
    Carisse O; Tremblay DM; Lévesque CA; Gindro K; Ward P; Houde A
    Phytopathology; 2009 Nov; 99(11):1273-80. PubMed ID: 19821731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spore traps network: a new tool for predicting epidemics of wheat yellow rust.
    Dedeurwaerder G; Duvivier M; Mvuyenkure SM; Renard ME; Van Hese V; Marchal G; Moreau JM; Legrève A
    Commun Agric Appl Biol Sci; 2011; 76(4):667-70. PubMed ID: 22702186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores.
    Ferrandino FJ
    Phytopathology; 2008 May; 98(5):492-503. PubMed ID: 18943216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular diagnostics for fungal plant pathogens.
    McCartney HA; Foster SJ; Fraaije BA; Ward E
    Pest Manag Sci; 2003 Feb; 59(2):129-42. PubMed ID: 12587866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catching Spores: Linking Epidemiology, Pathogen Biology, and Physics to Ground-Based Airborne Inoculum Monitoring.
    Mahaffee WF; Margairaz F; Ulmer L; Bailey BN; Stoll R
    Plant Dis; 2023 Jan; 107(1):13-33. PubMed ID: 35679849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics.
    Carisse O; Savary S; Willocquet L
    Phytopathology; 2008 Jan; 98(1):38-44. PubMed ID: 18943236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria.
    Bull CT; Koike ST
    Annu Rev Phytopathol; 2015; 53():157-80. PubMed ID: 26002289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews.
    Ojiambo PS; Gent DH; Quesada-Ocampo LM; Hausbeck MK; Holmes GJ
    Annu Rev Phytopathol; 2015; 53():223-46. PubMed ID: 26002291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms.
    Ahmad F; Babalola OO; Tak HI
    Anal Bioanal Chem; 2012 Sep; 404(4):1247-55. PubMed ID: 22644150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape.
    Alonso Chavez V; Parnell S; VAN DEN Bosch F
    J Theor Biol; 2016 Oct; 407():290-302. PubMed ID: 27477202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roguing with replacement in perennial crops: conditions for successful disease management.
    Sisterson MS; Stenger DC
    Phytopathology; 2013 Feb; 103(2):117-28. PubMed ID: 23075167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant disease diagnostic capabilities and networks.
    Miller SA; Beed FD; Harmon CL
    Annu Rev Phytopathol; 2009; 47():15-38. PubMed ID: 19385729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS.
    Smith J; Waterhouse S; Paveley N
    Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovations in air sampling to detect plant pathogens.
    West J; Kimber R
    Ann Appl Biol; 2015 Jan; 166(1):4-17. PubMed ID: 25745191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network Analysis: A Systems Framework to Address Grand Challenges in Plant Pathology.
    Garrett KA; Alcalá-Briseño RI; Andersen KF; Buddenhagen CE; Choudhury RA; Fulton JC; Hernandez Nopsa JF; Poudel R; Xing Y
    Annu Rev Phytopathol; 2018 Aug; 56():559-580. PubMed ID: 29979928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease.
    Brown JK; Hovmøller MS
    Science; 2002 Jul; 297(5581):537-41. PubMed ID: 12142520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.