These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27003505)

  • 21. Use of a production region model to assess the efficacy of various air filtration systems for preventing airborne transmission of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae: results from a 2-year study.
    Dee S; Otake S; Deen J
    Virus Res; 2010 Dec; 154(1-2):177-84. PubMed ID: 20667494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.
    Skelsey P; Rossing WA; Kessel GJ; van der Werf W
    Phytopathology; 2009 Jul; 99(7):887-95. PubMed ID: 19522587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Verticillium dahliae Infects, Alters Plant Biomass, and Produces Inoculum on Rotation Crops.
    Wheeler DL; Johnson DA
    Phytopathology; 2016 Jun; 106(6):602-13. PubMed ID: 26828231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the Aerial Interconnectivity of Distant Reservoirs of
    Leyronas C; Morris CE; Choufany M; Soubeyrand S
    Front Microbiol; 2018; 9():2257. PubMed ID: 30337908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying and naming plant-pathogenic fungi: past, present, and future.
    Crous PW; Hawksworth DL; Wingfield MJ
    Annu Rev Phytopathol; 2015; 53():247-67. PubMed ID: 26047568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disentangling the genetic origins of a plant pathogen during disease spread using an original molecular epidemiology approach.
    Xhaard C; Barrès B; Andrieux A; Bousset L; Halkett F; Frey P
    Mol Ecol; 2012 May; 21(10):2383-98. PubMed ID: 22490255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using fungi and yeasts to manage vegetable crop diseases.
    Punja ZK; Utkhede RS
    Trends Biotechnol; 2003 Sep; 21(9):400-7. PubMed ID: 12948673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends.
    Kaur S; Dhillon GS; Brar SK; Vallad GE; Chand R; Chauhan VB
    Crit Rev Microbiol; 2012 May; 38(2):136-51. PubMed ID: 22257260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.
    Miles TD; Martin FN; Coffey MD
    Phytopathology; 2015 Feb; 105(2):265-78. PubMed ID: 25208239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed pathology progress in academia and industry.
    Munkvold GP
    Annu Rev Phytopathol; 2009; 47():285-311. PubMed ID: 19400648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Migrate or evolve: options for plant pathogens under climate change.
    Chakraborty S
    Glob Chang Biol; 2013 Jul; 19(7):1985-2000. PubMed ID: 23554235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epidemics of ray blight on pyrethrum are linked to seed contamination and overwintering inoculum of Phoma ligulicola var. inoxydabilis.
    Pethybridge SJ; Gent DH; Hay FS
    Phytopathology; 2011 Sep; 101(9):1112-21. PubMed ID: 21501088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Threshold microsclerotial inoculum for cotton verticillium wilt determined through wet-sieving and real-time quantitative PCR.
    Wei F; Fan R; Dong H; Shang W; Xu X; Zhu H; Yang J; Hu X
    Phytopathology; 2015 Feb; 105(2):220-9. PubMed ID: 25098492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next-generation methods for early disease detection in crops.
    Trippa D; Scalenghe R; Basso MF; Panno S; Davino S; Morone C; Giovino A; Oufensou S; Luchi N; Yousefi S; Martinelli F
    Pest Manag Sci; 2024 Feb; 80(2):245-261. PubMed ID: 37599270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New grower-friendly methods for plant pathogen monitoring.
    De Boer SH; López MM
    Annu Rev Phytopathol; 2012; 50():197-218. PubMed ID: 22607454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends in plant virus epidemiology: opportunities from new or improved technologies.
    Jones RA
    Virus Res; 2014 Jun; 186():3-19. PubMed ID: 24275610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-enabled analysis of plant-pathogen migration.
    Goss EM
    Annu Rev Phytopathol; 2015; 53():121-35. PubMed ID: 25938274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the integrated pest management practices of southeastern US ornamental nursery operations.
    LeBude AV; White SA; Fulcher AF; Frank S; Klingeman Iii WE; Chong JH; Chappell MR; Windham A; Braman K; Hale F; Dunwell W; Williams-Woodward J; Ivors K; Adkins C; Neal J
    Pest Manag Sci; 2012 Sep; 68(9):1278-88. PubMed ID: 22517784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of relationship between fungal aerosol within a municipal dump and epiphytic mycoflora of crop plants.
    Ropek DR; Fraczek K; Kozdrój J; Chmiel M
    Int J Environ Health Res; 2013; 23(3):215-25. PubMed ID: 22870959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The epidemiology and management of seedborne bacterial diseases.
    Gitaitis R; Walcott R
    Annu Rev Phytopathol; 2007; 45():371-97. PubMed ID: 17474875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.