These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27003611)
1. Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors. Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ J Proteomics; 2016 Apr; 139():84-94. PubMed ID: 27003611 [TBL] [Abstract][Full Text] [Related]
2. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484 [TBL] [Abstract][Full Text] [Related]
3. Modifications of fungal membrane proteins profile under pathogenicity induction: A proteomic analysis of Botrytis cinerea membranome. Liñeiro E; Chiva C; Cantoral JM; Sabidó E; Fernández-Acero FJ Proteomics; 2016 Sep; 16(17):2363-76. PubMed ID: 27329576 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea. Liñeiro E; Macias-Sánchez AJ; Espinazo M; Cantoral JM; Moraga J; Collado IG; Fernández-Acero FJ Curr Microbiol; 2018 Apr; 75(4):431-440. PubMed ID: 29147762 [TBL] [Abstract][Full Text] [Related]
5. Dataset of the Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ Data Brief; 2016 Jun; 7():1447-1450. PubMed ID: 27761508 [TBL] [Abstract][Full Text] [Related]
6. Comparative proteomic analysis of Botrytis cinerea secretome. Shah P; Atwood JA; Orlando R; El Mubarek H; Podila GK; Davis MR J Proteome Res; 2009 Mar; 8(3):1123-30. PubMed ID: 19140674 [TBL] [Abstract][Full Text] [Related]
7. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of Escobar-Niño A; Morano Bermejo IM; Carrasco Reinado R; Fernandez-Acero FJ Microorganisms; 2021 Aug; 9(9):. PubMed ID: 34576732 [TBL] [Abstract][Full Text] [Related]
8. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca Kilani J; Davanture M; Simon A; Zivy M; Fillinger S J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051 [TBL] [Abstract][Full Text] [Related]
10. Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures. Davanture M; Dumur J; Bataillé-Simoneau N; Campion C; Valot B; Zivy M; Simoneau P; Fillinger S Proteomics; 2014 Jul; 14(13-14):1639-45. PubMed ID: 24825570 [TBL] [Abstract][Full Text] [Related]
11. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
12. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Lecompte F; Nicot PC; Ripoll J; Abro MA; Raimbault AK; Lopez-Lauri F; Bertin N Ann Bot; 2017 Mar; 119(5):931-943. PubMed ID: 28065923 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583 [TBL] [Abstract][Full Text] [Related]
14. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
15. The FRP1 F-box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Jonkers W; VAN Kan JA; Tijm P; Lee YW; Tudzynski P; Rep M; Michielse CB Mol Plant Pathol; 2011 Aug; 12(6):548-63. PubMed ID: 21722294 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome Profiling Data of Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519 [No Abstract] [Full Text] [Related]
18. 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Fernández-Acero FJ; Colby T; Harzen A; Carbú M; Wieneke U; Cantoral JM; Schmidt J Proteomics; 2010 Jun; 10(12):2270-80. PubMed ID: 20376862 [TBL] [Abstract][Full Text] [Related]
19. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Doehlemann G; Berndt P; Hahn M Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354 [TBL] [Abstract][Full Text] [Related]
20. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]