These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 2700373)

  • 1. Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion.
    Inauen W; Suzuki M; Granger DN
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):143-55. PubMed ID: 2700373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of oxygen free radicals during ischemia and reperfusion in the experimental and clinical setting. Oxygen free radicals and the heart.
    Ferrari R
    Am J Cardiovasc Pathol; 1992; 4(2):103-14. PubMed ID: 1524795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical mediated damage in skeletal muscle.
    Lindsay T; Romaschin A; Walker PM
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):157-70. PubMed ID: 2700374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of xanthine oxidase and the effects of antioxidants in ischemia reperfusion cell injury.
    Cañas PE
    Acta Physiol Pharmacol Ther Latinoam; 1999; 49(1):13-20. PubMed ID: 10797836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of postischemic vascular dysfunction in skeletal muscle: implications for therapeutic intervention.
    Carden DL; Korthuis RJ
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):277-98. PubMed ID: 2700375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanisms of reperfusion injury of rat kidney].
    Okajima S
    Hokkaido Igaku Zasshi; 1990 May; 65(3):277-84. PubMed ID: 2379911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radicals and myocardial ischemia and reperfusion injury.
    Simpson PJ; Lucchesi BR
    J Lab Clin Med; 1987 Jul; 110(1):13-30. PubMed ID: 3298506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD(P)H oxidase contributes to the progression of remote hepatic parenchymal injury and endothelial dysfunction, but not microvascular perfusion deficits.
    Dorman RB; Wunder C; Saba H; Shoemaker JL; MacMillan-Crow LA; Brock RW
    Am J Physiol Gastrointest Liver Physiol; 2006 May; 290(5):G1025-32. PubMed ID: 16339298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide.
    Rieger JM; Shah AR; Gidday JM
    Exp Eye Res; 2002 Apr; 74(4):493-501. PubMed ID: 12076093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.
    DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW
    Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion?
    Hearse DJ; Manning AS; Downey JM; Yellon DM
    Acta Physiol Scand Suppl; 1986; 548():65-78. PubMed ID: 3529823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence implicating xanthine oxidase and neutrophils in reperfusion-induced microvascular dysfunction.
    Kurose I; Granger DN
    Ann N Y Acad Sci; 1994 Jun; 723():158-79. PubMed ID: 8030863
    [No Abstract]   [Full Text] [Related]  

  • 13. Ischemia, reperfusion and oxygen free radicals.
    Manso CF
    Rev Port Cardiol; 1992 Nov; 11(11):997-8. PubMed ID: 1290647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver.
    Frederiks WM; Bosch KS
    Histol Histopathol; 1995 Jan; 10(1):111-6. PubMed ID: 7756731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia-reperfusion damage in rats: role of oxygen free radicals generation.
    Villegas I; Martín AR; Toma W; de la Lastra CA
    Eur J Pharmacol; 2004 Nov; 505(1-3):195-203. PubMed ID: 15556153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-derived free radicals in postischemic tissue injury.
    McCord JM
    N Engl J Med; 1985 Jan; 312(3):159-63. PubMed ID: 2981404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthine oxidase potentiation of reactive oxygen intermediates in isolated canine peripheral neutrophils.
    Gruber DF; O'Halloran KP; Farese AM
    J Biol Response Mod; 1989 Oct; 8(5):462-7. PubMed ID: 2795091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The significance of oxygen free radicals in trauma of the central nervous system].
    Novelli GP; De Gaudio AR; Paternostro E; Melani AM; Festimanni F
    Minerva Anestesiol; 1993 Dec; 59(12):719-31. PubMed ID: 8177415
    [No Abstract]   [Full Text] [Related]  

  • 19. [Possible significance of free oxygen radicals for reperfusion injury].
    Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S
    Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of ischemia--reperfusion induced myocardial infarct size in rats by caffeic acid phenethyl ester (CAPE).
    Ozer MK; Parlakpinar H; Acet A
    Clin Biochem; 2004 Aug; 37(8):702-5. PubMed ID: 15302615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.