These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27003834)
1. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations. Asare EO; Tompkins AM; Bomblies A PLoS One; 2016; 11(3):e0150626. PubMed ID: 27003834 [TBL] [Abstract][Full Text] [Related]
2. A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations. Asare EO; Tompkins AM; Amekudzi LK; Ermert V Geospat Health; 2016 Mar; 11(1 Suppl):390. PubMed ID: 27063734 [TBL] [Abstract][Full Text] [Related]
3. The effect of explicit convection on simulated malaria transmission across Africa. Talib J; Abatan AA; HoekSpaans R; Yamba EI; Egbebiyi TS; Caminade C; Jones A; Birch CE; Olagbegi OM; Morse AP PLoS One; 2024; 19(4):e0297744. PubMed ID: 38625879 [TBL] [Abstract][Full Text] [Related]
4. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Tompkins AM; Ermert V Malar J; 2013 Feb; 12():65. PubMed ID: 23419192 [TBL] [Abstract][Full Text] [Related]
5. Early warnings of the potential for malaria transmission in rural Africa using the hydrology, entomology and malaria transmission simulator (HYDREMATS). Yamana TK; Eltahir EA Malar J; 2010 Nov; 9():323. PubMed ID: 21073726 [TBL] [Abstract][Full Text] [Related]
6. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Smith MW; Willis T; Alfieri L; James WHM; Trigg MA; Yamazaki D; Hardy AJ; Bisselink B; De Roo A; Macklin MG; Thomas CJ Nat Commun; 2020 Aug; 11(1):4353. PubMed ID: 32859908 [TBL] [Abstract][Full Text] [Related]
7. Modelled and observed mean and seasonal relationships between climate, population density and malaria indicators in Cameroon. Mbouna AD; Tompkins AM; Lenouo A; Asare EO; Yamba EI; Tchawoua C Malar J; 2019 Nov; 18(1):359. PubMed ID: 31707994 [TBL] [Abstract][Full Text] [Related]
8. Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations. Wang W; Lu H; Yang D; Sothea K; Jiao Y; Gao B; Peng X; Pang Z PLoS One; 2016; 11(3):e0152229. PubMed ID: 27010692 [TBL] [Abstract][Full Text] [Related]
9. Bayesian analysis of the impact of rainfall data product on simulated slope failure for North Carolina locations. Yatheendradas S; Kirschbaum D; Nearing G; Vrugt JA; Baum RL; Wooten R; Lu N; Godt JW Comput Geosci (Bassum); 2019 Jun; 23(3):495-522. PubMed ID: 33505211 [TBL] [Abstract][Full Text] [Related]
10. Estimating the malaria transmission over the Indian subcontinent in a warming environment using a dynamical malaria model. Chaturvedi S; Dwivedi S J Water Health; 2020 Jun; 18(3):358-374. PubMed ID: 32589621 [TBL] [Abstract][Full Text] [Related]
11. Prevention of malaria transmission around reservoirs: an observational and modelling study on the effect of wind direction and village location. Endo N; Eltahir EAB Lancet Planet Health; 2018 Sep; 2(9):e406-e413. PubMed ID: 30177009 [TBL] [Abstract][Full Text] [Related]
12. Relative importance of VECTRI model parameters in the malaria disease transmission and prevalence. Parihar RS; Kumar V; Anand A; Bal PK; Thapliyal A Int J Biometeorol; 2024 Mar; 68(3):495-509. PubMed ID: 38157022 [TBL] [Abstract][Full Text] [Related]
13. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Cheema MJ; Immerzeel WW; Bastiaanssen WG Ground Water; 2014; 52(1):25-36. PubMed ID: 23441997 [TBL] [Abstract][Full Text] [Related]
14. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104 [TBL] [Abstract][Full Text] [Related]
15. Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond. McAndrew B; Ahn C J Environ Manage; 2017 Nov; 202(Pt 1):198-207. PubMed ID: 28735204 [TBL] [Abstract][Full Text] [Related]
16. Study of uncertainty of satellite and reanalysis precipitation products and their impact on hydrological simulation. Miao Y; Liu R; Wang Q; Jiao L; Wang Y; Li L; Cao L Environ Sci Pollut Res Int; 2021 Nov; 28(43):60935-60953. PubMed ID: 34165745 [TBL] [Abstract][Full Text] [Related]
17. Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall. Kaufmann V; Pinheiro A; Castro NM J Contam Hydrol; 2014 May; 160():53-64. PubMed ID: 24650647 [TBL] [Abstract][Full Text] [Related]
18. Continuous Hydrologic and Water Quality Monitoring of Vernal Ponds. Mina O; Gall HE; Chandler JW; Harper J; Taylor M J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155765 [TBL] [Abstract][Full Text] [Related]
19. Parsimonious Mechanistic Modeling of Bacterial Runoff into Irrigation Ponds To Inform Food Safety Management of Agricultural Water Quality. Vazquez KM; Muñoz-Carpena R; Danyluk MD; Havelaar AH Appl Environ Microbiol; 2021 Jul; 87(15):e0059621. PubMed ID: 33990305 [TBL] [Abstract][Full Text] [Related]
20. Modifying the 'pulse-reserve' paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Reynolds JF; Kemp PR; Ogle K; Fernández RJ Oecologia; 2004 Oct; 141(2):194-210. PubMed ID: 15042457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]