These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27004460)

  • 1. Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates.
    Conde MM; Torré JP; Miqueu C
    Phys Chem Chem Phys; 2016 Apr; 18(15):10018-27. PubMed ID: 27004460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Hydroquinone-Alumina Composites Stabilizing a Guest-Free Clathrate Structure: Applications in Gas Processing.
    Coupan R; Moonen P; Dicharry C; Plantier F; Diaz J; Péré E; Khoukh A; Guerton F; Sénéchal P; Charvillat C; De Solan ML; Torré JP
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34137-34147. PubMed ID: 32634302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity.
    Coupan R; Péré E; Dicharry C; Torré JP
    J Phys Chem A; 2017 Jul; 121(29):5450-5458. PubMed ID: 28675931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A description of hydroquinone clathrates using molecular dynamics: Molecular model and crystalline structures for CH
    Comesaña A; Pérez-Rodríguez M; Fernández-Fernández AM; Piñeiro MM
    J Chem Phys; 2018 Jun; 148(24):244502. PubMed ID: 29960310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate description of phase diagram of clathrate hydrates at the molecular level.
    Belosudov RV; Subbotin OS; Mizuseki H; Kawazoe Y; Belosludov VR
    J Chem Phys; 2009 Dec; 131(24):244510. PubMed ID: 20059082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the thermodynamic stability of clathrate hydrates IV: double occupancy of cages.
    Tanaka H; Nakatsuka T; Koga K
    J Chem Phys; 2004 Sep; 121(11):5488-93. PubMed ID: 15352844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host perturbation in a β-hydroquinone clathrate studied by combined X-ray/neutron charge-density analysis: implications for molecular inclusion in supramolecular entities.
    Clausen HF; Jørgensen MR; Cenedese S; Schmøkel MS; Christensen M; Chen YS; Koutsantonis G; Overgaard J; Spackman MA; Iversen BB
    Chemistry; 2014 Jun; 20(26):8089-98. PubMed ID: 24828367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase synthesis and characterization of CH4-loaded hydroquinone clathrates.
    Lee JW; Lee Y; Takeya S; Kawamura T; Yamamoto Y; Lee YJ; Yoon JH
    J Phys Chem B; 2010 Mar; 114(9):3254-8. PubMed ID: 20163090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple Guest Occupancy and Negative Compressibility in Hydrogen-Loaded β-Hydroquinone Clathrate.
    Rozsa VF; Strobel TA
    J Phys Chem Lett; 2014 Jun; 5(11):1880-4. PubMed ID: 26273868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cage occupancy of clathrate hydrates at infinite dilution: experimental determination and thermodynamic significance.
    Seol J; Lee JW; Kim DY; Takeya S; Ripmeester JA; Lee H
    J Phys Chem B; 2010 Jan; 114(2):804-8. PubMed ID: 20000371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-dependent release of guest molecules and structural transitions in hydroquinone clathrate.
    Kim BS; Lee Y; Yoon JH
    J Phys Chem B; 2013 Jun; 117(25):7621-5. PubMed ID: 23750696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of clathrate structure type and guest position by molecular mechanics.
    Fleischer EB; Janda KC
    J Phys Chem A; 2013 May; 117(19):4001-10. PubMed ID: 23600658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of predicted gas hydrate occupancies on treatment of intermolecular interactions.
    Thomas C; Picaud S; Ballenegger V; Mousis O
    J Chem Phys; 2010 Mar; 132(10):104510. PubMed ID: 20232974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing structural transition and guest dynamics of hydroquinone clathrates by temperature-dependent terahertz time-domain spectroscopy.
    Lee ES; Han KW; Yoon JH; Jeon TI
    J Phys Chem A; 2011 Jan; 115(1):35-8. PubMed ID: 21142130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper storage-capacity limit and multiple occupancy phenomena in H
    Parage B; Miqueu C; Pérez-Rodríguez M; Méndez-Morales T; Piñeiro MM
    Phys Chem Chem Phys; 2024 Feb; 26(8):6939-6948. PubMed ID: 38334443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the thermodynamic stability of clathrate hydrates V: phase behaviors accommodating large guest molecules with new reference states.
    Tanaka H; Matsumoto M
    J Phys Chem B; 2011 Dec; 115(48):14256-62. PubMed ID: 21902174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of N
    Jang J; Lim SG; Jeong JH; Raghu AV; Lee JW; Cha M; Muromachi S; Yamamoto Y; Yoon JH
    Environ Sci Technol; 2021 Mar; 55(6):3909-3917. PubMed ID: 33476139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas content of binary clathrate hydrates with promoters.
    Papadimitriou NI; Tsimpanogiannis IN; Stubos AK
    J Chem Phys; 2009 Jul; 131(4):044102. PubMed ID: 19655832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Dynamics and Cage-Guest Interactions in Clathrate Hydrates Using Solid-State NMR.
    Sengupta S; Guo J; Janda KC; Martin RW
    J Phys Chem B; 2015 Dec; 119(50):15485-92. PubMed ID: 26583257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.