These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27004550)

  • 1. Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation.
    Vainorius N; Lehmann S; Gustafsson A; Samuelson L; Dick KA; Pistol ME
    Nano Lett; 2016 Apr; 16(4):2774-80. PubMed ID: 27004550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement in thickness-controlled GaAs polytype nanodots.
    Vainorius N; Lehmann S; Jacobsson D; Samuelson L; Dick KA; Pistol ME
    Nano Lett; 2015 Apr; 15(4):2652-6. PubMed ID: 25761051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires.
    Corfdir P; Van Hattem B; Uccelli E; Conesa-Boj S; Lefebvre P; Fontcuberta i Morral A; Phillips RT
    Nano Lett; 2013 Nov; 13(11):5303-10. PubMed ID: 24134509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction.
    Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M
    ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies.
    Dong A; Yu H; Wang F; Buhro WE
    J Am Chem Soc; 2008 May; 130(18):5954-61. PubMed ID: 18393420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.
    Zhou C; Zhang XT; Zheng K; Chen PP; Matsumura S; Lu W; Zou J
    Nanoscale; 2019 Apr; 11(14):6859-6865. PubMed ID: 30912781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires.
    Tian Y; Sakr MR; Kinder JM; Liang D; Macdonald MJ; Qiu RL; Gao HJ; Gao XP
    Nano Lett; 2012 Dec; 12(12):6492-7. PubMed ID: 23167670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires.
    Yu X; Wang H; Lu J; Zhao J; Misuraca J; Xiong P; von Molnár S
    Nano Lett; 2012 Oct; 12(10):5436-42. PubMed ID: 22984828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires.
    Kim W; Dubrovskii VG; Vukajlovic-Plestina J; Tütüncüoglu G; Francaviglia L; Güniat L; Potts H; Friedl M; Leran JB; Fontcuberta I Morral A
    Nano Lett; 2018 Jan; 18(1):49-57. PubMed ID: 29257895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependent electronic band structure of wurtzite GaAs nanowires.
    Vainorius N; Kubitza S; Lehmann S; Samuelson L; Dick KA; Pistol ME
    Nanoscale; 2018 Jan; 10(3):1481-1486. PubMed ID: 29303195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the structure of crescent-shaped GaAs quantum wires by combination of electron microscopy and photoluminescence spectroscopy.
    Matsuhata H; Wang XL; Ogura M
    J Electron Microsc (Tokyo); 2000; 49(2):349-55. PubMed ID: 11108058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal phase engineered quantum wells in ZnO nanowires.
    Khranovskyy V; Glushenkov AM; Chen Y; Khalid A; Zhang H; Hultman L; Monemar B; Yakimova R
    Nanotechnology; 2013 May; 24(21):215202. PubMed ID: 23619281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate.
    Wu J; Ramsay A; Sanchez A; Zhang Y; Kim D; Brossard F; Hu X; Benamara M; Ware ME; Mazur YI; Salamo GJ; Aagesen M; Wang Z; Liu H
    Nano Lett; 2016 Jan; 16(1):504-11. PubMed ID: 26666697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled quantum dots in a nanowire system for quantum photonics.
    Heiss M; Fontana Y; Gustafsson A; Wüst G; Magen C; O'Regan DD; Luo JW; Ketterer B; Conesa-Boj S; Kuhlmann AV; Houel J; Russo-Averchi E; Morante JR; Cantoni M; Marzari N; Arbiol J; Zunger A; Warburton RJ; Fontcuberta i Morral A
    Nat Mater; 2013 May; 12(5):439-44. PubMed ID: 23377293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.
    Timofeeva M; Bouravleuv A; Cirlin G; Shtrom I; Soshnikov I; Reig Escalé M; Sergeyev A; Grange R
    Nano Lett; 2016 Oct; 16(10):6290-6297. PubMed ID: 27657488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic Switching of the Growth Direction of Self-Catalyzed GaAs Nanowires.
    Koivusalo ES; Hakkarainen TV; Galeti HVA; Gobato YG; Dubrovskii VG; Guina MD
    Nano Lett; 2019 Jan; 19(1):82-89. PubMed ID: 30537843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dislocation-free axial InAs-on-GaAs nanowires on silicon.
    Beznasyuk DV; Robin E; Hertog MD; Claudon J; Hocevar M
    Nanotechnology; 2017 Sep; 28(36):365602. PubMed ID: 28671871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal-structure-dependent photoluminescence from InP nanowires.
    Mattila M; Hakkarainen T; Mulot M; Lipsanen H
    Nanotechnology; 2006 Mar; 17(6):1580-3. PubMed ID: 26558562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.