These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. Fukuda I; Kamiya N; Yonezawa Y; Nakamura H J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355 [TBL] [Abstract][Full Text] [Related]
5. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems. Fukuda I; Kamiya N; Nakamura H J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538 [TBL] [Abstract][Full Text] [Related]
7. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software. Sakuraba S; Fukuda I J Comput Chem; 2018 Jul; 39(20):1551-1560. PubMed ID: 29727031 [TBL] [Abstract][Full Text] [Related]
8. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method. Amisaki T; Toyoda S; Miyagawa H; Kitamura K J Comput Chem; 2003 Apr; 24(5):582-92. PubMed ID: 12632472 [TBL] [Abstract][Full Text] [Related]
9. Multilevel summation for periodic electrostatics using B-splines. Kaya H; Hardy DJ; Skeel RD J Chem Phys; 2021 Apr; 154(14):144105. PubMed ID: 33858159 [TBL] [Abstract][Full Text] [Related]
10. The ENUF method-Ewald summation based on nonuniform fast Fourier transform: Implementation, parallelization, and application. Yang SC; Li B; Zhu YL; Laaksonen A; Wang YL J Comput Chem; 2020 Oct; 41(27):2316-2335. PubMed ID: 32808686 [TBL] [Abstract][Full Text] [Related]
11. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system. Fukuda I J Chem Phys; 2013 Nov; 139(17):174107. PubMed ID: 24206287 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Sagui C; Darden TA Annu Rev Biophys Biomol Struct; 1999; 28():155-79. PubMed ID: 10410799 [TBL] [Abstract][Full Text] [Related]
13. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations. Nam K; Gao J; York DM J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110 [TBL] [Abstract][Full Text] [Related]
14. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald. Lagardère L; Lipparini F; Polack É; Stamm B; Cancès É; Schnieders M; Ren P; Maday Y; Piquemal JP J Chem Theory Comput; 2015 Jun; 11(6):2589-99. PubMed ID: 26575557 [TBL] [Abstract][Full Text] [Related]
15. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. Fennell CJ; Gezelter JD J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904 [TBL] [Abstract][Full Text] [Related]
16. On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems. Wang H; Zhang P; Schütte C J Chem Theory Comput; 2012 Sep; 8(9):3243-56. PubMed ID: 26605733 [TBL] [Abstract][Full Text] [Related]