These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27004867)

  • 41. B-LUT: Fast and low memory B-spline image interpolation.
    Sarrut D; Vandemeulebroucke J
    Comput Methods Programs Biomed; 2010 Aug; 99(2):172-8. PubMed ID: 20034697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient lookup table using a linear function of inverse distance squared.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2013 Oct; 34(28):2412-20. PubMed ID: 23934755
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions.
    Shaw DE
    J Comput Chem; 2005 Oct; 26(13):1318-28. PubMed ID: 16013057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Dynamics Simulations Accelerated by GPU for Biological Macromolecules with a Non-Ewald Scheme for Electrostatic Interactions.
    Mashimo T; Fukunishi Y; Kamiya N; Takano Y; Fukuda I; Nakamura H
    J Chem Theory Comput; 2013 Dec; 9(12):5599-609. PubMed ID: 26592294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treecode algorithm for pairwise electrostatic interactions with solvent-solute polarization.
    Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):020902. PubMed ID: 20365522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An N log N approximation based on the natural organization of biomolecules for speeding up the computation of long range interactions.
    Anandakrishnan R; Onufriev AV
    J Comput Chem; 2010 Mar; 31(4):691-706. PubMed ID: 19569183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics.
    Mathiowetz AM; Jain A; Karasawa N; Goddard WA
    Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a lattice-sum method emulating nonperiodic boundary conditions for the treatment of electrostatic interactions in molecular simulations: a continuum-electrostatics study.
    Kastenholz MA; Hünenberger PH
    J Chem Phys; 2006 Mar; 124(12):124108. PubMed ID: 16599663
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved Random Batch Ewald Method in Molecular Dynamics Simulations.
    Liang J; Xu Z; Zhao Y
    J Phys Chem A; 2022 Jun; 126(22):3583-3593. PubMed ID: 35635179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.
    Chan KK; Tang S
    Opt Express; 2011 Dec; 19(27):26891-904. PubMed ID: 22274272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DL_POLY_3: the CCP5 national UK code for molecular-dynamics simulations.
    Todorov IT; Smith W
    Philos Trans A Math Phys Eng Sci; 2004 Sep; 362(1822):1835-52. PubMed ID: 15306418
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS.
    Kurzak J; Mirkovic D; Pettitt BM; Johnsson SL
    Int J High Perform Comput Appl; 2008 Jan; 22(2):219-230. PubMed ID: 19763233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast and spectrally accurate Ewald summation for 2-periodic electrostatic systems.
    Lindbo D; Tornberg AK
    J Chem Phys; 2012 Apr; 136(16):164111. PubMed ID: 22559474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fast pairwise evaluation of molecular surface area.
    Vasilyev V; Purisima EO
    J Comput Chem; 2002 May; 23(7):737-45. PubMed ID: 11948592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An n log n Generalized Born Approximation.
    Anandakrishnan R; Daga M; Onufriev AV
    J Chem Theory Comput; 2011 Mar; 7(3):544-59. PubMed ID: 26596289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Survey: interpolation methods in medical image processing.
    Lehmann TM; Gönner C; Spitzer K
    IEEE Trans Med Imaging; 1999 Nov; 18(11):1049-75. PubMed ID: 10661324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acceleration of Ab Initio QM/MM Calculations under Periodic Boundary Conditions by Multiscale and Multiple Time Step Approaches.
    Nam K
    J Chem Theory Comput; 2014 Oct; 10(10):4175-83. PubMed ID: 26588116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems.
    Torras J
    Phys Chem Chem Phys; 2015 Apr; 17(15):9959-72. PubMed ID: 25783778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of molecular simulation methods to accurately represent protein-surface interactions: Method assessment for the calculation of electrostatic effects.
    Collier G; Vellore NA; Latour RA; Stuart SJ
    Biointerphases; 2009 Dec; 4(4):57-64. PubMed ID: 20408725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.