These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27004893)
1. Mathematical model for self-propelled droplets driven by interfacial tension. Nagai KH; Tachibana K; Tobe Y; Kazama M; Kitahata H; Omata S; Nagayama M J Chem Phys; 2016 Mar; 144(11):114707. PubMed ID: 27004893 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Suematsu NJ; Saikusa K; Nagata T; Izumi S Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577 [TBL] [Abstract][Full Text] [Related]
3. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant. Tanabe T; Ogasawara T; Suematsu NJ Phys Rev E; 2020 Aug; 102(2-1):023102. PubMed ID: 32942422 [TBL] [Abstract][Full Text] [Related]
4. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
5. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant. Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium. Suematsu NJ; Mori Y; Amemiya T; Nakata S J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682 [TBL] [Abstract][Full Text] [Related]
8. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants. Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892 [TBL] [Abstract][Full Text] [Related]
9. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages. Banno T; Kuroha R; Toyota T Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384 [TBL] [Abstract][Full Text] [Related]
10. Flow-Driven Self-Propulsion of Oil Droplet on a Surfactant Solution Surface, as Observed by Time-Resolved Interfacial Tension and Surface Flow Speed Measurements. Nomoto T; Kimura H; Chiari L; Toyota T; Fujinami M Langmuir; 2024 Feb; 40(8):4468-4474. PubMed ID: 38363648 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related]
12. On the Lagrangian/Eulerian modeling of dispersed droplet inertia: internal circulation transition. Naterer GF; Milanez M; Venn G J Colloid Interface Sci; 2005 Nov; 291(2):577-84. PubMed ID: 15979084 [TBL] [Abstract][Full Text] [Related]
13. Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology. Zakharov AA; MÃ¥rsell E; Hilner E; Timm R; Andersen JN; Lundgren E; Mikkelsen A ACS Nano; 2015 May; 9(5):5422-31. PubMed ID: 25880600 [TBL] [Abstract][Full Text] [Related]
14. Motion of a droplet through microfluidic ratchets. Liu J; Yap YF; Nguyen NT Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448 [TBL] [Abstract][Full Text] [Related]
15. The role of interfacial rheological properties on Ostwald ripening in emulsions. Meinders MB; van Vliet T Adv Colloid Interface Sci; 2004 May; 108-109():119-26. PubMed ID: 15072934 [TBL] [Abstract][Full Text] [Related]
16. Quantitative estimation of the parameters for self-motion driven by difference in surface tension. Suematsu NJ; Sasaki T; Nakata S; Kitahata H Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964 [TBL] [Abstract][Full Text] [Related]
17. A numerical investigation on the drainage of a surfactant-modified water droplet in paraffin oil. Lekhlifi A; Fanzar A; Antoni M Adv Colloid Interface Sci; 2015 Aug; 222():446-60. PubMed ID: 25772623 [TBL] [Abstract][Full Text] [Related]
18. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants. Banno T; Miura S; Kuroha R; Toyota T Langmuir; 2013 Jun; 29(25):7689-96. PubMed ID: 23706080 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous motion and deformation of a self-propelled droplet. Yoshinaga N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012913. PubMed ID: 24580303 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels. Wu C; Xu X; Qian T J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]