These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27004898)

  • 21. Combining temperature and force to study folding of an RNA hairpin.
    Stephenson W; Keller S; Santiago R; Albrecht JE; Asare-Okai PN; Tenenbaum SA; Zuker M; Li PT
    Phys Chem Chem Phys; 2014 Jan; 16(3):906-17. PubMed ID: 24276015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic origins of monovalent facilitated RNA folding.
    Holmstrom ED; Fiore JL; Nesbitt DJ
    Biochemistry; 2012 May; 51(18):3732-43. PubMed ID: 22448852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escherichia coli RNase P RNA: substrate ribose modifications at G+1, but not nucleotide -1/+73 base pairing, affect the transition state for cleavage chemistry.
    Cuzic S; Heidemann KA; Wöhnert J; Hartmann RK
    J Mol Biol; 2008 May; 379(1):1-8. PubMed ID: 18452950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correcting for heat capacity and 5'-TA type terminal nearest neighbors improves prediction of DNA melting temperatures using nearest-neighbor thermodynamic models.
    Hughesman CB; Turner RF; Haynes C
    Biochemistry; 2011 Apr; 50(13):2642-9. PubMed ID: 21323352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of RNA duplexes with tandem mismatches containing a uracil-uracil pair flanked by C.G/G.C or G.C/A.U closing base pairs.
    Bourdélat-Parks BN; Wartell RM
    Biochemistry; 2005 Dec; 44(50):16710-7. PubMed ID: 16342961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nearest neighbor parameters for Watson-Crick complementary heteroduplexes formed between 2'-O-methyl RNA and RNA oligonucleotides.
    Kierzek E; Mathews DH; Ciesielska A; Turner DH; Kierzek R
    Nucleic Acids Res; 2006; 34(13):3609-14. PubMed ID: 16870722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase.
    Sastry SS; Ross BM
    Biochemistry; 1996 Dec; 35(49):15715-25. PubMed ID: 8961934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations.
    Bell DR; Cheng SY; Salazar H; Ren P
    Sci Rep; 2017 Apr; 7():45812. PubMed ID: 28393861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides.
    Hopfinger MC; Kirkpatrick CC; Znosko BM
    Nucleic Acids Res; 2020 Sep; 48(16):8901-8913. PubMed ID: 32810273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in six 22-base pair deoxyoligonucleotides.
    Riccelli PV; Vallone PM; Kashin I; Faldasz BD; Lane MJ; Benight AS
    Biochemistry; 1999 Aug; 38(34):11197-208. PubMed ID: 10460177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution.
    Wagner D; Rinnenthal J; Narberhaus F; Schwalbe H
    Nucleic Acids Res; 2015 Jun; 43(11):5572-85. PubMed ID: 25940621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects.
    Rouzina I; Bloomfield VA
    Biophys J; 1999 Dec; 77(6):3252-5. PubMed ID: 10585947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that folding of an RNA tetraloop hairpin is less cooperative than its DNA counterpart.
    Moody EM; Feerrar JC; Bevilacqua PC
    Biochemistry; 2004 Jun; 43(25):7992-8. PubMed ID: 15209494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes.
    Li R; Ge HW; Cho SS
    J Phys Chem B; 2013 Oct; 117(42):12943-52. PubMed ID: 23841777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence competition assay measurements of free energy changes for RNA pseudoknots.
    Liu B; Shankar N; Turner DH
    Biochemistry; 2010 Jan; 49(3):623-34. PubMed ID: 19921809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating uncertainty in predicted folding free energy changes of RNA secondary structures.
    Zuber J; Mathews DH
    RNA; 2019 Jun; 25(6):747-754. PubMed ID: 30952689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins.
    Nayak RK; Van Orden A
    J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of RNA hairpin loops closed by AU base pairs.
    Vecenie CJ; Serra MJ
    Biochemistry; 2004 Sep; 43(37):11813-7. PubMed ID: 15362866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relative stabilities of base pair stacking interactions and single mismatches in long RNA measured by temperature gradient gel electrophoresis.
    Zhu J; Wartell RM
    Biochemistry; 1997 Dec; 36(49):15326-35. PubMed ID: 9398261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.