These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27005317)
1. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry. Baba T; Campbell JL; Le Blanc JC; Baker PR J Lipid Res; 2016 May; 57(5):858-67. PubMed ID: 27005317 [TBL] [Abstract][Full Text] [Related]
2. Liquid chromatography-tandem mass spectrometry for the determination of sphingomyelin species from calf brain, ox liver, egg yolk, and krill oil. Zhou L; Zhao M; Ennahar S; Bindler F; Marchioni E J Agric Food Chem; 2012 Jan; 60(1):293-8. PubMed ID: 22148474 [TBL] [Abstract][Full Text] [Related]
3. Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO). Baba T; Campbell JL; Le Blanc JC; Baker PR J Lipid Res; 2016 Nov; 57(11):2015-2027. PubMed ID: 27457033 [TBL] [Abstract][Full Text] [Related]
4. Liquid chromatography with dual parallel mass spectrometry and (31)P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin. I. Bovine brain and chicken egg yolk. Byrdwell WC; Perry RH J Chromatogr A; 2006 Nov; 1133(1-2):149-71. PubMed ID: 16938303 [TBL] [Abstract][Full Text] [Related]
5. Molecular species of sphingomyelin: determination by high-performance liquid chromatography/mass spectrometry with electrospray and high-performance liquid chromatography/tandem mass spectrometry with atmospheric pressure chemical ionization. Karlsson AA; Michélsen P; Odham G J Mass Spectrom; 1998 Dec; 33(12):1192-8. PubMed ID: 9875523 [TBL] [Abstract][Full Text] [Related]
6. Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry. Baba T; Campbell JL; Le Blanc JCY; Baker PRS; Ikeda K J Lipid Res; 2018 May; 59(5):910-919. PubMed ID: 29540574 [TBL] [Abstract][Full Text] [Related]
7. Liquid chromatography with dual parallel mass spectrometry and 31P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin. II. Bovine milk sphingolipids. Byrdwell WC; Perry RH J Chromatogr A; 2007 Apr; 1146(2):164-85. PubMed ID: 17303148 [TBL] [Abstract][Full Text] [Related]
8. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Thomas MC; Mitchell TW; Harman DG; Deeley JM; Nealon JR; Blanksby SJ Anal Chem; 2008 Jan; 80(1):303-11. PubMed ID: 18062677 [TBL] [Abstract][Full Text] [Related]
9. Distinguishing Cis and Trans Isomers in Intact Complex Lipids Using Electron Impact Excitation of Ions from Organics Mass Spectrometry. Baba T; Campbell JL; Le Blanc JCY; Baker PRS Anal Chem; 2017 Jul; 89(14):7307-7315. PubMed ID: 28613874 [TBL] [Abstract][Full Text] [Related]
10. Quantification and comparison of some natural sphingomyelins by on-line high-performance liquid chromatography/discharge-assisted thermospray mass spectrometry. Valeur A; Olsson NU; Kaufmann P; Wada S; Kroon CG; Westerdahl G; Odham G Biol Mass Spectrom; 1994 Jun; 23(6):313-9. PubMed ID: 8038224 [TBL] [Abstract][Full Text] [Related]
11. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry. Ryan E; Nguyen CQN; Shiea C; Reid GE J Am Soc Mass Spectrom; 2017 Jul; 28(7):1406-1419. PubMed ID: 28455688 [TBL] [Abstract][Full Text] [Related]
12. Resolving Modifications on Sphingoid Base and Zhao X; Wu G; Zhang W; Dong M; Xia Y Anal Chem; 2020 Nov; 92(21):14775-14782. PubMed ID: 33052665 [TBL] [Abstract][Full Text] [Related]
13. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine. Filippov A; Munavirov B; Gröbner G; Rudakova M Magn Reson Imaging; 2012 Apr; 30(3):413-21. PubMed ID: 22260936 [TBL] [Abstract][Full Text] [Related]
14. Dissociation of Biomolecules by an Intense Low-Energy Electron Beam in a High Sensitivity Time-of-Flight Mass Spectrometer. Baba T; Ryumin P; Duchoslav E; Chen K; Chelur A; Loyd B; Chernushevich I J Am Soc Mass Spectrom; 2021 Aug; 32(8):1964-1975. PubMed ID: 34080873 [TBL] [Abstract][Full Text] [Related]
15. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. Sullards MC Methods Enzymol; 2000; 312():32-45. PubMed ID: 11070861 [TBL] [Abstract][Full Text] [Related]
16. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Campbell JL; Baba T Anal Chem; 2015 Jun; 87(11):5837-45. PubMed ID: 25955306 [TBL] [Abstract][Full Text] [Related]
17. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. Kerwin JL; Tuininga AR; Ericsson LH J Lipid Res; 1994 Jun; 35(6):1102-14. PubMed ID: 8077849 [TBL] [Abstract][Full Text] [Related]
18. Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Houjou T; Yamatani K; Nakanishi H; Imagawa M; Shimizu T; Taguchi R Rapid Commun Mass Spectrom; 2004; 18(24):3123-30. PubMed ID: 15565732 [TBL] [Abstract][Full Text] [Related]
19. Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins. Quinn PJ; Wolf C Biochim Biophys Acta; 2009 May; 1788(5):1126-37. PubMed ID: 19150608 [TBL] [Abstract][Full Text] [Related]
20. Quantitative and Qualitative Method for Sphingomyelin by LC-MS Using Two Stable Isotopically Labeled Sphingomyelin Species. Hama K; Fujiwara Y; Yokoyama K J Vis Exp; 2018 May; (135):. PubMed ID: 29782002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]