BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2700541)

  • 1. Current trends in Candida albicans research.
    Datta A; Ganesan K; Natarajan K
    Adv Microb Physiol; 1989; 30():53-88. PubMed ID: 2700541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenicity of Candida albicans: quest for a molecular switch.
    Datta A
    Braz J Med Biol Res; 1994 Dec; 27(12):2721-32. PubMed ID: 7549996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.
    Chang P; Fan X; Chen J
    Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans.
    Lee CM; Nantel A; Jiang L; Whiteway M; Shen SH
    Mol Microbiol; 2004 Feb; 51(3):691-709. PubMed ID: 14731272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis.
    Butler DK; All O; Goffena J; Loveless T; Wilson T; Toenjes KA
    Fungal Genet Biol; 2006 Aug; 43(8):573-82. PubMed ID: 16730201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distinct morphogenic states of Candida albicans.
    Sudbery P; Gow N; Berman J
    Trends Microbiol; 2004 Jul; 12(7):317-24. PubMed ID: 15223059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of Hsp70 phosphorylation sites reveals a role in Candida albicans cell and colony morphogenesis.
    Weissman Z; Pinsky M; Wolfgeher DJ; Kron SJ; Truman AW; Kornitzer D
    Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140135. PubMed ID: 31964485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection.
    Jackson BE; Wilhelmus KR; Mitchell BM
    Microb Pathog; 2007; 42(2-3):88-93. PubMed ID: 17241762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation.
    Shen J; Cowen LE; Griffin AM; Chan L; Köhler JR
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20918-23. PubMed ID: 19075239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans.
    Miwa T; Takagi Y; Shinozaki M; Yun CW; Schell WA; Perfect JR; Kumagai H; Tamaki H
    Eukaryot Cell; 2004 Aug; 3(4):919-31. PubMed ID: 15302825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner.
    Glory A; van Oostende CT; Geitmann A; Bachewich C
    Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.
    Kumamoto CA; Vinces MD
    Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Global Analysis of Kinase Function in
    Bar-Yosef H; Gildor T; Ramírez-Zavala B; Schmauch C; Weissman Z; Pinsky M; Naddaf R; Morschhäuser J; Arkowitz RA; Kornitzer D
    Front Cell Infect Microbiol; 2018; 8():17. PubMed ID: 29473018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.
    Cleary IA; Reinhard SM; Lazzell AL; Monteagudo C; Thomas DP; Lopez-Ribot JL; Saville SP
    FEMS Yeast Res; 2016 Mar; 16(2):fow011. PubMed ID: 26851404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Septin function in Candida albicans morphogenesis.
    Warenda AJ; Konopka JB
    Mol Biol Cell; 2002 Aug; 13(8):2732-46. PubMed ID: 12181342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity.
    Noble SM; French S; Kohn LA; Chen V; Johnson AD
    Nat Genet; 2010 Jul; 42(7):590-8. PubMed ID: 20543849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.