These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27005757)

  • 1. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.
    Annamalai A; Lee HH; Choi SH; Lee SY; Gracia-Espino E; Subramanian A; Park J; Kong KJ; Jang JS
    Sci Rep; 2016 Mar; 6():23183. PubMed ID: 27005757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states.
    Shinde PS; Choi SH; Kim Y; Ryu J; Jang JS
    Phys Chem Chem Phys; 2016 Jan; 18(4):2495-509. PubMed ID: 26698132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping.
    Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy.
    Pei GX; Wijten JHJ; Weckhuysen BM
    Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Sb
    Annamalai A; Sandström R; Gracia-Espino E; Boulanger N; Boily JF; Mühlbacher I; Shchukarev A; Wågberg T
    ACS Appl Mater Interfaces; 2018 May; 10(19):16467-16473. PubMed ID: 29663796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M; Yang Y; Ling Y; Qiu W; Wang F; Liu T; Song Y; Liu X; Fang P; Tong Y; Li Y
    Nano Lett; 2017 Apr; 17(4):2490-2495. PubMed ID: 28334530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly self-diffused Sn doping in α-Fe
    Ma H; Mahadik MA; Park JW; Kumar M; Chung HS; Chae WS; Kong GW; Lee HH; Choi SH; Jang JS
    Nanoscale; 2018 Dec; 10(47):22560-22571. PubMed ID: 30480694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation.
    Park JW; Subramanian A; Mahadik MA; Lee SY; Choi SH; Jang JS
    Dalton Trans; 2018 Mar; 47(12):4076-4086. PubMed ID: 29436539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method.
    Miao C; Shi T; Xu G; Ji S; Ye C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1310-6. PubMed ID: 23347501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.