BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27005888)

  • 1. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.
    Klink C; Eisen S; Daus B; Heim J; Schlömann M; Schopf S
    J Appl Microbiol; 2016 Jun; 120(6):1520-30. PubMed ID: 27005888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.
    Zhou Q; Gao J; Li Y; Zhu S; He L; Nie W; Zhang R
    Water Sci Technol; 2017 Sep; 76(5-6):1347-1359. PubMed ID: 28953461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species.
    Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D
    Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid process for heavy metal removal from wastewater sludge.
    Drogui P; Blais JF; Mercier G
    Water Environ Res; 2005; 77(4):372-80. PubMed ID: 16121505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.
    Mehrotra A; Sreekrishnan TR
    Environ Technol; 2017 Nov; 38(21):2709-2724. PubMed ID: 28043205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge.
    Drogui P; Mercier G; Blais JF
    J Environ Qual; 2005; 34(3):816-24. PubMed ID: 15843644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge.
    Gu XY; Wong JW
    Environ Technol; 2004 Aug; 25(8):889-97. PubMed ID: 15366556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Isolation of Thiobacillus ferrooxidans and its application on heavy metal bioleaching from sewage sludge].
    Zhou S; Wang S; Yu S; Zhou L
    Huan Jing Ke Xue; 2003 May; 24(3):56-60. PubMed ID: 12916203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge.
    Gu X; Wong JW
    Environ Sci Technol; 2004 May; 38(10):2934-9. PubMed ID: 15212270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of bioleaching on sewage sludge pyrolysis.
    Chen Z; Hu M; Cui B; Liu S; Guo D; Xiao B
    Waste Manag; 2016 Feb; 48():383-388. PubMed ID: 26481636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies.
    Pathak A; Kothari R; Dastidar MG; Sreekrishnan TR; Kim DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):93-100. PubMed ID: 24117088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced heavy metal bioleaching efficiencies from anaerobically digested sewage sludge with coinoculation of Acidithiobacillus ferrooxidans ANYL-1 and Blastoschizomyces capitatus Y5.
    Wong JW; Gu XY
    Water Sci Technol; 2004; 50(9):83-9. PubMed ID: 15580998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioleaching of metals from anaerobic sewage sludge: effects of total solids, leaching microorganisms, and energy source.
    Lombardi AT; Garcia Júnior O; Mozeto AA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 May; 36(5):793-806. PubMed ID: 11460332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans.
    Cai G; Ebrahimi M; Zheng G; Kaksonen AH; Morris C; O'Hara IM; Zhang Z
    J Environ Manage; 2021 Oct; 295():113114. PubMed ID: 34171779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do ferrous iron-oxidizing acidophiles (
    Hetz SA; Schippers A
    Front Microbiol; 2024; 15():1359019. PubMed ID: 38655078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge.
    Chen SY; Cheng YK
    Chemosphere; 2019 Nov; 234():346-355. PubMed ID: 31228836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study.
    Zhou W; Zhang L; Peng J; Ge Y; Tian Z; Sun J; Cheng H; Zhou H
    Chemosphere; 2019 Oct; 232():345-355. PubMed ID: 31158629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.