BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27005983)

  • 1. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.
    He N; Li ZH
    Phys Chem Chem Phys; 2016 Apr; 18(15):10005-17. PubMed ID: 27005983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO oxidation catalyzed by a single gold atom: benchmark calculations and the performance of DFT methods.
    Fang HC; Li ZH; Fan KN
    Phys Chem Chem Phys; 2011 Aug; 13(29):13358-69. PubMed ID: 21713266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential-Rate Correlations of Supported Palladium-Based Catalysts for Aqueous Formic Acid Dehydrogenation.
    Qi X; Obata K; Yui Y; Honma T; Lu X; Ibe M; Takanabe K
    J Am Chem Soc; 2024 Apr; 146(13):9191-9204. PubMed ID: 38500345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PdCo nanoparticles supported on carbon fibers derived from cotton: Maximum utilization of Pd atoms for efficient reduction of nitroarenes.
    Yang J; Wang WD; Dong Z
    J Colloid Interface Sci; 2018 Aug; 524():84-92. PubMed ID: 29635088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Stable Single-Atom Catalyst with Ionic Pd Active Sites Supported on N-Doped Carbon Nanotubes for Formic Acid Decomposition.
    Podyacheva OY; Bulushev DA; Suboch AN; Svintsitskiy DA; Lisitsyn AS; Modin E; Chuvilin A; Gerasimov EY; Sobolev VI; Parmon VN
    ChemSusChem; 2018 Nov; 11(21):3724-3727. PubMed ID: 30175551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT.
    Maheswari S; Karthikeyan S; Murugan P; Sridhar P; Pitchumani S
    Phys Chem Chem Phys; 2012 Jul; 14(27):9683-95. PubMed ID: 22692447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of water cluster catalyzed decomposition of formic acid.
    Inaba S
    J Phys Chem A; 2014 Apr; 118(16):3026-38. PubMed ID: 24735438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on the gas-phase reaction mechanism between palladium monoxide and methane.
    Yang HQ; Hu CW; Gao C; Yang MY; Li FM; Li CQ; Li XY
    J Comput Chem; 2011 Dec; 32(16):3440-55. PubMed ID: 21919016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.
    Wang Y; Tang Y; Shao Y
    J Mol Graph Model; 2017 Sep; 76():521-534. PubMed ID: 28629707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigations on decomposition of HCOOH catalyzed by Pd7 cluster.
    Li SJ; Zhou X; Tian WQ
    J Phys Chem A; 2012 Nov; 116(47):11745-52. PubMed ID: 23102058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Oxidation of Hydroquinone in Aqueous Solution over Bimetallic PdCo Catalyst Supported on Carbon: Effect of Interferents and Electrochemical Measurement.
    Ye W; Shi X; Zhang Y; Hong C; Wang C; Budzianowski WM; Xue D
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2994-3002. PubMed ID: 26788813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO-induced formation of an interpenetrating bicuboctahedral Au2Pd18 kernel in nanosized Au2Pd28(CO)26(PEt3)10: formal replacement of an interior (μ12-Pd)2 fragment in the corresponding known isostructural homopalladium Pd30(CO)26(PEt3)10 with nonisovalent (μ12-Au)2 and resulting experimental/theoretical implications.
    Mednikov EG; Ivanov SA; Dahl LF
    Inorg Chem; 2011 Nov; 50(22):11795-806. PubMed ID: 22026509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic understanding of electrocatalytic reduction of CO
    Sahu A; Mondal K; Ghosh P
    J Mol Model; 2018 Aug; 24(9):248. PubMed ID: 30132139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-coated silica supported palladium for hydrogen production from formic acid - Exploring the influence of strong metal support interaction.
    Guo J; Hu S; Gao Z; Zhang X; Sun S
    J Colloid Interface Sci; 2024 Mar; 658():468-475. PubMed ID: 38118193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Performance of Pd for Formic Acid Dehydrogenation by Introducing Barium Titanate.
    Wang J; Guo J; Zhou Q; Hu S; Zhang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18713-18721. PubMed ID: 38568896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.