BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27006168)

  • 1. Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability.
    Gonzalez EJ; Heppner TJ; Nelson MT; Vizzard MA
    J Physiol; 2016 Jul; 594(13):3575-88. PubMed ID: 27006168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of transforming growth factor-β isoforms and cognate receptors in the rat urinary bladder following cyclophosphamide-induced cystitis.
    Gonzalez EJ; Girard BM; Vizzard MA
    Am J Physiol Renal Physiol; 2013 Nov; 305(9):F1265-76. PubMed ID: 23926183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PACAP38-Mediated Bladder Afferent Nerve Activity Hyperexcitability and Ca
    Heppner TJ; Hennig GW; Nelson MT; May V; Vizzard MA
    J Mol Neurosci; 2019 Jul; 68(3):348-356. PubMed ID: 30022438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bladder urothelium converts bacterial lipopolysaccharide information into neural signaling via an ATP-mediated pathway to enhance the micturition reflex for rapid defense.
    Ueda N; Kondo M; Takezawa K; Kiuchi H; Sekii Y; Inagaki Y; Soda T; Fukuhara S; Fujita K; Uemura M; Imamura R; Miyagawa Y; Nonomura N; Shimada S
    Sci Rep; 2020 Dec; 10(1):21167. PubMed ID: 33273625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment.
    Yu Y; de Groat WC
    Am J Physiol Renal Physiol; 2008 May; 294(5):F1146-56. PubMed ID: 18322018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A.
    Smith CP; Vemulakonda VM; Kiss S; Boone TB; Somogyi GT
    Neurochem Int; 2005 Sep; 47(4):291-7. PubMed ID: 15970360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purinergic signalling in the urinary bladder.
    Andersson KE
    Auton Neurosci; 2015 Sep; 191():78-81. PubMed ID: 25979768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder.
    Beckel JM; Daugherty SL; Tyagi P; Wolf-Johnston AS; Birder LA; Mitchell CH; de Groat WC
    J Physiol; 2015 Apr; 593(8):1857-71. PubMed ID: 25630792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat.
    Beckel JM; Birder LA
    J Physiol; 2012 Mar; 590(6):1465-80. PubMed ID: 22250215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacologic perspective on the physiology of the lower urinary tract.
    Andersson KE; Hedlund P
    Urology; 2002 Nov; 60(5 Suppl 1):13-20; discussion 20-1. PubMed ID: 12493344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in afferent pathways and urothelial function in the male mouse bladder.
    Daly DM; Nocchi L; Liaskos M; McKay NG; Chapple C; Grundy D
    J Physiol; 2014 Feb; 592(3):537-49. PubMed ID: 24297847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophosphamide-induced alterations of the micturition reflex in a novel in situ urinary bladder model in the anesthetized rat.
    Aronsson P; Carlsson T; Winder M; Tobin G
    Neurourol Urodyn; 2015 Apr; 34(4):375-80. PubMed ID: 24481868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors.
    Timóteo MA; Carneiro I; Silva I; Noronha-Matos JB; Ferreirinha F; Silva-Ramos M; Correia-de-Sá P
    Biochem Pharmacol; 2014 Jan; 87(2):371-9. PubMed ID: 24269631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bladder activation: afferent mechanisms.
    Andersson KE
    Urology; 2002 May; 59(5 Suppl 1):43-50. PubMed ID: 12007522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction.
    Vizzard MA
    Exp Neurol; 2000 Jan; 161(1):273-84. PubMed ID: 10683293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highlights in basic autonomic neuroscience: contribution of the urothelium to sensory mechanisms in the urinary bladder.
    de Groat WC
    Auton Neurosci; 2013 Oct; 177(2):67-71. PubMed ID: 23602550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium.
    Chopra B; Barrick SR; Meyers S; Beckel JM; Zeidel ML; Ford AP; de Groat WC; Birder LA
    J Physiol; 2005 Feb; 562(Pt 3):859-71. PubMed ID: 15576455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].
    Neuhaus J; Scholler U; Freick K; Schwalenberg T; Heinrich M; Horn LC; Stolzenburg JU
    Urologe A; 2008 Sep; 47(9):1085-6, 1088-90. PubMed ID: 18679652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis.
    Girard BM; Wolf-Johnston A; Braas KM; Birder LA; May V; Vizzard MA
    J Mol Neurosci; 2008 Nov; 36(1-3):310-20. PubMed ID: 18563302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function.
    Gonzalez EJ; Merrill L; Vizzard MA
    Am J Physiol Regul Integr Comp Physiol; 2014 Jun; 306(12):R869-78. PubMed ID: 24760999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.