BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27006220)

  • 1. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.
    Gao W; Wu N; Du J; Zhou L; Lian Y; Wang L; Liu D
    Food Chem; 2016 Aug; 205():106-11. PubMed ID: 27006220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of environmental rhodamine B contamination in paprika during the vegetation process.
    Lu Q; Gao W; Du J; Zhou L; Lian Y
    J Agric Food Chem; 2012 May; 60(19):4773-8. PubMed ID: 22524706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of Sudan I in paprika fruits caused by agricultural environmental contamination.
    Lian Y; Gao W; Zhou L; Wu N; Lu Q; Han W; Tie X
    J Agric Food Chem; 2014 May; 62(18):4072-6. PubMed ID: 24766082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodamine B in spices determined by a sensitive UPLC-MS/MS method.
    Wang M; Nie X; Tian L; Hu J; Yin D; Qiao H; Li T; Li Y
    Food Addit Contam Part B Surveill; 2019 Mar; 12(1):59-64. PubMed ID: 30463493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying potential sources of Sudan I contamination in Capsicum fruits over its growth period.
    Wu N; Gao W; Zhou L; Lian Y; Li F; Han W
    Food Chem; 2015 Apr; 173():99-104. PubMed ID: 25466000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transfer of natural Rhodamine B contamination from raw paprika fruit to capsicum oleoresin during the extraction process.
    Wu N; Gao W; Lian Y; Du J; Tie X
    Food Chem; 2017 Dec; 237():786-792. PubMed ID: 28764068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].
    PĂ©rez-Vargas HM; Vidal-Durango JV; Marrugo-Negrete JL
    Rev Salud Publica (Bogota); 2014; 16(6):897-909. PubMed ID: 26120859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination and contamination pattern of perchlorate in tea by ultra performance liquid chromatography and tandem mass spectrometry.
    Liu Y; Sun H; Zhou L; Luo F; Zhang X; Chen Z
    Food Chem; 2019 Feb; 274():180-186. PubMed ID: 30372924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Capsicum chinense fruits for heavy metals bioaccumulation.
    Antonious GF; Snyder JC; Berke T; Jarret RL
    J Environ Sci Health B; 2010 Aug; 45(6):562-71. PubMed ID: 20635296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of seven heavy metals among hot pepper plant parts.
    Antonious GF
    J Environ Sci Health B; 2016; 51(5):309-15. PubMed ID: 26828959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LC-MS/MS determination of acrylamide in instant noodles from supermarkets in the Hebei province of China.
    Yang LX; Zhang GX; Yang LX; He Y
    Food Addit Contam Part B Surveill; 2012; 5(2):100-4. PubMed ID: 24779738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China.
    Li JT; Qiu JW; Wang XW; Zhong Y; Lan CY; Shu WS
    Environ Pollut; 2006 Sep; 143(1):159-65. PubMed ID: 16377042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution and chemical forms of cadmium in two hot pepper cultivars differing in cadmium accumulation.
    Xin J; Huang B
    J Agric Food Chem; 2014 Jan; 62(2):508-15. PubMed ID: 24377701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal.
    Dahal BM; Fuerhacker M; Mentler A; Karki KB; Shrestha RR; Blum WE
    Environ Pollut; 2008 Sep; 155(1):157-63. PubMed ID: 18068879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation study of difenoconazole in/on chili fruit and soil in India.
    Mukhopadhyay S; Das S; Bhattacharyya A; Pal S
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):54-7. PubMed ID: 21533979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of eight illegal dyes in chili products by liquid chromatography-tandem mass spectrometry.
    Li J; Ding XM; Liu DD; Guo F; Chen Y; Zhang YB; Liu HM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 942-943():46-52. PubMed ID: 24212142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of aflatoxins in edible oil from markets in Hebei Province of China by liquid chromatography-tandem mass spectrometry.
    Yang LX; Liu YP; Miao H; Dong B; Yang NJ; Chang FQ; Yang LX; Sun JB
    Food Addit Contam Part B Surveill; 2011; 4(4):244-7. PubMed ID: 24786246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of pyridaben residue levels in hot pepper fruit and leaves by liquid chromatography-tandem mass spectrometry: effect of household processes.
    Kim SW; Abd El-Aty AM; Rahman MM; Choi JH; Choi OJ; Rhee GS; Chang MI; Kim H; Abid MD; Shin SC; Shim JH
    Biomed Chromatogr; 2015 Jul; 29(7):990-7. PubMed ID: 25402259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach.
    Li FL; Liu CQ; Yang YG; Bi XY; Liu TZ; Zhao ZQ
    Sci Total Environ; 2012 Aug; 431():339-47. PubMed ID: 22705869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.