BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27006227)

  • 1. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.
    Ercan P; El SN
    Food Chem; 2016 Aug; 205():163-9. PubMed ID: 27006227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.
    Ercan P; El SN
    Int J Biol Macromol; 2018 Aug; 115():933-939. PubMed ID: 29709538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity.
    Bhagyawant SS; Narvekar DT; Gupta N; Bhadkaria A; Gautam AK; Srivastava N
    Protein Pept Lett; 2019; 26(7):494-501. PubMed ID: 30919768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet.
    Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM
    J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions.
    Herrera T; Navarro Del Hierro J; Fornari T; Reglero G; Martin D
    Food Chem; 2019 Jan; 270():509-517. PubMed ID: 30174080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of bioaccessible anthocyanins and procyanidins from apple, red grape, cinnamon on α-amylase, α-glucosidase and lipase.
    Ercan P; El SN
    Int J Vitam Nutr Res; 2021 Jan; 91(1-2):16-24. PubMed ID: 32326848
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches.
    Zhang Y; Yang Z; Liu G; Wu Y; Ouyang J
    Food Chem; 2020 Sep; 324():126847. PubMed ID: 32344340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory Effects of Siegesbeckia orientalis Extracts on Advanced Glycation End Product Formation and Key Enzymes Related to Metabolic Syndrome.
    Hung WC; Ling XH; Chang CC; Hsu HF; Wang SW; Lee YC; Luo C; Lee YT; Houng JY
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29065451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory Potential of Red Cabbage against Digestive Enzymes Linked to Obesity and Type 2 Diabetes.
    Podsędek A; Majewska I; Kucharska AZ
    J Agric Food Chem; 2017 Aug; 65(33):7192-7199. PubMed ID: 28753316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.
    Anyanwu GO; Iqbal J; Khan SU; Zaib S; Rauf K; Onyeneke CE; Ojo OO; Nisar-Ur-Rahman
    J Ethnopharmacol; 2019 Jan; 229():293-302. PubMed ID: 30342966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits.
    Podsędek A; Majewska I; Redzynia M; Sosnowska D; Koziołkiewicz M
    J Agric Food Chem; 2014 May; 62(20):4610-7. PubMed ID: 24785184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state bioconversion of chickpea (Cicer arietinum L.) by Rhizopus oligosporus to improve total phenolic content, antioxidant activity and hypoglycemic functionality.
    Sánchez-Magaña LM; Cuevas-Rodríguez EO; Gutiérrez-Dorado R; Ayala-Rodríguez AE; Valdez-Ortiz A; Milán-Carrillo J; Reyes-Moreno C
    Int J Food Sci Nutr; 2014 Aug; 65(5):558-64. PubMed ID: 24611669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera.
    Tan Y; Chang SKC; Zhang Y
    Food Chem; 2017 Jan; 214():259-268. PubMed ID: 27507474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.
    Song YH; Kim DW; Curtis-Long MJ; Park C; Son M; Kim JY; Yuk HJ; Lee KW; Park KH
    Eur J Med Chem; 2016 May; 114():201-8. PubMed ID: 26974386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties.
    Mihaylova D; Desseva I; Popova A; Dincheva I; Vrancheva R; Lante A; Krastanov A
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus.
    Franco RR; da Silva Carvalho D; de Moura FBR; Justino AB; Silva HCG; Peixoto LG; Espindola FS
    J Ethnopharmacol; 2018 Apr; 215():140-146. PubMed ID: 29274842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longipetalosides A-C, new steroidal saponins from Tribulus longipetalus.
    Naveed MA; Riaz N; Saleem M; Jabeen B; Ashraf M; Ismail T; Jabbar A
    Steroids; 2014 May; 83():45-51. PubMed ID: 24530871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase.
    Tong DP; Zhu KX; Guo XN; Peng W; Zhou HM
    Int J Biol Macromol; 2018 Feb; 107(Pt A):129-136. PubMed ID: 28863898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.