BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 27006892)

  • 1. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma.
    Sato N; Cheng XB; Kohi S; Koga A; Hirata K
    Acta Pharm Sin B; 2016 Mar; 6(2):101-5. PubMed ID: 27006892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight.
    Sato N; Kohi S; Hirata K; Goggins M
    Cancer Sci; 2016 May; 107(5):569-75. PubMed ID: 26918382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma.
    Kudo D; Suto A; Hakamada K
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28282922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Methylumbelliferone inhibits enhanced hyaluronan synthesis and cell migration in pancreatic cancer cells in response to tumor-stromal interactions.
    Cheng XB; Sato N; Kohi S; Koga A; Hirata K
    Oncol Lett; 2018 May; 15(5):6297-6301. PubMed ID: 29725394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives.
    Wu Y; Zhang C; Jiang K; Werner J; Bazhin AV; D'Haese JG
    Front Oncol; 2020; 10():621937. PubMed ID: 33520728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase of Tumor Infiltrating γδ T-cells in Pancreatic Ductal Adenocarcinoma Through Remodeling of the Extracellular Matrix by a Hyaluronan Synthesis Suppressor, 4-Methylumbelliferone.
    Suto A; Kudo D; Yoshida E; Nagase H; Suto S; Mimura J; Itoh K; Hakamada K
    Pancreas; 2019 Feb; 48(2):292-298. PubMed ID: 30589828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential.
    Cannon A; Thompson C; Hall BR; Jain M; Kumar S; Batra SK
    Genes Cancer; 2018 Mar; 9(3-4):78-86. PubMed ID: 30108679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer.
    Koltai T; Reshkin SJ; Carvalho TMA; Cardone RA
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the Tumor Stroma: the Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20).
    Wong KM; Horton KJ; Coveler AL; Hingorani SR; Harris WP
    Curr Oncol Rep; 2017 Jul; 19(7):47. PubMed ID: 28589527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronan activated-metabolism phenotype (HAMP) in pancreatic ductal adenocarcinoma.
    Kudo Y; Kohi S; Hirata K; Goggins M; Sato N
    Oncotarget; 2019 Sep; 10(54):5592-5604. PubMed ID: 31608136
    [No Abstract]   [Full Text] [Related]  

  • 11. Hyaluronidase-Expressing
    Ebelt ND; Zuniga E; Passi KB; Sobocinski LJ; Manuel ER
    Mol Cancer Ther; 2020 Feb; 19(2):706-716. PubMed ID: 31694889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma.
    Lee DU; Han BS; Jung KH; Hong SS
    Biomol Ther (Seoul); 2024 May; 32(3):281-290. PubMed ID: 38590092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides?
    Jiang B; Zhou L; Lu J; Wang Y; Liu C; You L; Guo J
    Front Oncol; 2020; 10():576399. PubMed ID: 33178608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment.
    Wong CW; Han HW; Tien YW; Hsu SH
    Biomaterials; 2019 Aug; 213():119202. PubMed ID: 31132644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer.
    Blair AB; Kim VM; Muth ST; Saung MT; Lokker N; Blouw B; Armstrong TD; Jaffee EM; Tsujikawa T; Coussens LM; He J; Burkhart RA; Wolfgang CL; Zheng L
    Clin Cancer Res; 2019 Sep; 25(17):5351-5363. PubMed ID: 31186314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Pancreatic Ductal Adenocarcinoma Treatment.
    Anderson EM; Thomassian S; Gong J; Hendifar A; Osipov A
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic cancer: Stroma and its current and emerging targeted therapies.
    Kota J; Hancock J; Kwon J; Korc M
    Cancer Lett; 2017 Apr; 391():38-49. PubMed ID: 28093284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Pancreatic Stellate Cells in Cancer.
    Schnittert J; Bansal R; Prakash J
    Trends Cancer; 2019 Feb; 5(2):128-142. PubMed ID: 30755305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Coupled with Enzymatic Depletion of Tumor Hyaluronan Induces Complete Regression of Aggressive Pancreatic Tumors.
    Manuel ER; Chen J; D'Apuzzo M; Lampa MG; Kaltcheva TI; Thompson CB; Ludwig T; Chung V; Diamond DJ
    Cancer Immunol Res; 2015 Sep; 3(9):1096-107. PubMed ID: 26134178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches.
    Carvalho TMA; Di Molfetta D; Greco MR; Koltai T; Alfarouk KO; Reshkin SJ; Cardone RA
    Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.