These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27006892)

  • 1. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma.
    Sato N; Cheng XB; Kohi S; Koga A; Hirata K
    Acta Pharm Sin B; 2016 Mar; 6(2):101-5. PubMed ID: 27006892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight.
    Sato N; Kohi S; Hirata K; Goggins M
    Cancer Sci; 2016 May; 107(5):569-75. PubMed ID: 26918382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma.
    Kudo D; Suto A; Hakamada K
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28282922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Methylumbelliferone inhibits enhanced hyaluronan synthesis and cell migration in pancreatic cancer cells in response to tumor-stromal interactions.
    Cheng XB; Sato N; Kohi S; Koga A; Hirata K
    Oncol Lett; 2018 May; 15(5):6297-6301. PubMed ID: 29725394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives.
    Wu Y; Zhang C; Jiang K; Werner J; Bazhin AV; D'Haese JG
    Front Oncol; 2020; 10():621937. PubMed ID: 33520728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase of Tumor Infiltrating γδ T-cells in Pancreatic Ductal Adenocarcinoma Through Remodeling of the Extracellular Matrix by a Hyaluronan Synthesis Suppressor, 4-Methylumbelliferone.
    Suto A; Kudo D; Yoshida E; Nagase H; Suto S; Mimura J; Itoh K; Hakamada K
    Pancreas; 2019 Feb; 48(2):292-298. PubMed ID: 30589828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential.
    Cannon A; Thompson C; Hall BR; Jain M; Kumar S; Batra SK
    Genes Cancer; 2018 Mar; 9(3-4):78-86. PubMed ID: 30108679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer.
    Koltai T; Reshkin SJ; Carvalho TMA; Cardone RA
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the Tumor Stroma: the Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20).
    Wong KM; Horton KJ; Coveler AL; Hingorani SR; Harris WP
    Curr Oncol Rep; 2017 Jul; 19(7):47. PubMed ID: 28589527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronan activated-metabolism phenotype (HAMP) in pancreatic ductal adenocarcinoma.
    Kudo Y; Kohi S; Hirata K; Goggins M; Sato N
    Oncotarget; 2019 Sep; 10(54):5592-5604. PubMed ID: 31608136
    [No Abstract]   [Full Text] [Related]  

  • 11. Hyaluronidase-Expressing
    Ebelt ND; Zuniga E; Passi KB; Sobocinski LJ; Manuel ER
    Mol Cancer Ther; 2020 Feb; 19(2):706-716. PubMed ID: 31694889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma.
    Lee DU; Han BS; Jung KH; Hong SS
    Biomol Ther (Seoul); 2024 May; 32(3):281-290. PubMed ID: 38590092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides?
    Jiang B; Zhou L; Lu J; Wang Y; Liu C; You L; Guo J
    Front Oncol; 2020; 10():576399. PubMed ID: 33178608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment.
    Wong CW; Han HW; Tien YW; Hsu SH
    Biomaterials; 2019 Aug; 213():119202. PubMed ID: 31132644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer.
    Blair AB; Kim VM; Muth ST; Saung MT; Lokker N; Blouw B; Armstrong TD; Jaffee EM; Tsujikawa T; Coussens LM; He J; Burkhart RA; Wolfgang CL; Zheng L
    Clin Cancer Res; 2019 Sep; 25(17):5351-5363. PubMed ID: 31186314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Pancreatic Ductal Adenocarcinoma Treatment.
    Anderson EM; Thomassian S; Gong J; Hendifar A; Osipov A
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic cancer: Stroma and its current and emerging targeted therapies.
    Kota J; Hancock J; Kwon J; Korc M
    Cancer Lett; 2017 Apr; 391():38-49. PubMed ID: 28093284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Pancreatic Stellate Cells in Cancer.
    Schnittert J; Bansal R; Prakash J
    Trends Cancer; 2019 Feb; 5(2):128-142. PubMed ID: 30755305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Coupled with Enzymatic Depletion of Tumor Hyaluronan Induces Complete Regression of Aggressive Pancreatic Tumors.
    Manuel ER; Chen J; D'Apuzzo M; Lampa MG; Kaltcheva TI; Thompson CB; Ludwig T; Chung V; Diamond DJ
    Cancer Immunol Res; 2015 Sep; 3(9):1096-107. PubMed ID: 26134178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches.
    Carvalho TMA; Di Molfetta D; Greco MR; Koltai T; Alfarouk KO; Reshkin SJ; Cardone RA
    Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.