These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27007287)

  • 1. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.
    Kim SB; Kim KJ; Cho MH; Kim JH; Kim KT; Kim SH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9405-12. PubMed ID: 27007287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of CuO and ZnO nano- and microparticles in the plant environment.
    Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ
    Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites.
    Jiang Y; Deng S; Hong S; Zhao J; Huang S; Wu CC; Gottfried JL; Nomura KI; Li Y; Tiwari S; Kalia RK; Vashishta P; Nakano A; Zheng X
    ACS Nano; 2018 Nov; 12(11):11366-11375. PubMed ID: 30335365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition.
    Dai J; Wang C; Wang Y; Xu W; Xu J; Shen Y; Zhang W; Ye Y; Shen R
    Nanotechnology; 2020 May; 31(19):195712. PubMed ID: 31978923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic Effect of Potassium Oxysalts on Combustion and Ignition of Al/CuO Composites.
    Ma X; Zhao W; Le W; Li J; Chen P; Jiao Q
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GC-MS metabolomics analysis of mesenchymal stem cells treated with copper oxide nanoparticles.
    Murgia A; Mancuso L; Manis C; Caboni P; Cao G
    Toxicol Mech Methods; 2016 Oct; 26(8):611-619. PubMed ID: 27552400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the reaction mechanism of Al/CuO nanocomposites doped with ammonium perchlorate.
    Wang CA; Xu J; Dai J; Wang Y; Shen Y; Zhang Z; Shen R; Ye Y
    Nanotechnology; 2020 Apr; 31(25):255401. PubMed ID: 32126531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of core-shell structure KClO
    Yang F; Kang X; Luo J; Yi Z; Tang Y
    Sci Rep; 2017 Jun; 7(1):3730. PubMed ID: 28623365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri.
    Rossetto AL; Melegari SP; Ouriques LC; Matias WG
    Sci Total Environ; 2014 Aug; 490():807-14. PubMed ID: 24907615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance HTPB-based energetic nanomaterial with CuO nanoparticles.
    de la Fuente JL; Mosquera G; París R
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6851-7. PubMed ID: 19908689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Situ Thermochemical Shock-Induced Stress at the Metal/Oxide Interface Enhances Reactivity of Aluminum Nanoparticles.
    Biswas P; Xu F; Ghildiyal P; Zachariah MR
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters.
    Majedi SM; Kelly BC; Lee HK
    Anal Chim Acta; 2014 Mar; 814():39-48. PubMed ID: 24528842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.
    Moon YS; Park ES; Kim TO; Lee HS; Lee SE
    Environ Toxicol Pharmacol; 2014 Nov; 38(3):922-31. PubMed ID: 25461552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Organized Al2Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature.
    Marín L; Warot-Fonrose B; Estève A; Chabal YJ; Alfredo Rodriguez L; Rossi C
    ACS Appl Mater Interfaces; 2016 May; 8(20):13104-13. PubMed ID: 27145017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously Altering the Energy Release and Promoting the Adhesive Force of an Electrophoretic Energetic Film with a Fluoropolymer.
    Yin Y; Dong Y; Li M; Ma Z
    Langmuir; 2022 Mar; 38(8):2569-2575. PubMed ID: 35175063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Ni and NiO Interface Layer on the Energy Performance of Core/Shell CuO/Al Systems.
    Chen J; Ren W; Hu B; Zheng Z; Chen Y; Chen J; Yu C; Song C; Wang J; Zhang W
    Langmuir; 2020 Nov; 36(43):12858-12865. PubMed ID: 33103434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.