These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 27007323)

  • 1. An online calculator for marine phytoplankton iron culturing experiments.
    Rivers AR; Rose AL; Webb EA
    J Phycol; 2013 Oct; 49(5):1017-21. PubMed ID: 27007323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate-limited growth of the marine diatom Thalassiosira weissflogii (Bacillariophyceae): evidence of non-monod growth kinetics(1).
    Laws EA; Pei S; Bienfang P
    J Phycol; 2013 Apr; 49(2):241-7. PubMed ID: 27008513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle implication on nitrogen acquisition and synchronization in Thalassiosira weissflogii (Bacillariophyceae).
    Mocquet C; Sciandra A; Talec A; Bernard O
    J Phycol; 2013 Apr; 49(2):371-80. PubMed ID: 27008523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton.
    Gutierrez T; Biller DV; Shimmield T; Green DH
    Biometals; 2012 Dec; 25(6):1185-94. PubMed ID: 22960806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, Expression and Characterization of the δ-carbonic Anhydrase of Thalassiosira weissflogii (Bacillariophyceae).
    Lee RB; Smith JA; Rickaby RE
    J Phycol; 2013 Feb; 49(1):170-7. PubMed ID: 27008398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent exopolymer particle production and aggregation by a marine planktonic diatom (Thalassiosira weissflogii) at different growth rates.
    Chen J; Thornton DC
    J Phycol; 2015 Apr; 51(2):381-93. PubMed ID: 26986532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.
    McGinn PJ; Morel FM
    Physiol Plant; 2008 May; 133(1):78-91. PubMed ID: 18405334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INTER- AND INTRASPECIFIC RELATIONSHIPS BETWEEN NUCLEAR DNA CONTENT AND CELL SIZE IN SELECTED MEMBERS OF THE CENTRIC DIATOM GENUS THALASSIOSIRA (BACILLARIOPHYCEAE)(1).
    Von Dassow P; Petersen TW; Chepurnov VA; Virginia Armbrust E
    J Phycol; 2008 Apr; 44(2):335-49. PubMed ID: 27041190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LOCALIZATION OF IRON WITHIN CENTRIC DIATOMS OF THE GENUS THALASSIOSIRA(1).
    Nuester J; Vogt S; Twining BS
    J Phycol; 2012 Jun; 48(3):626-34. PubMed ID: 27011078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.
    Isensee K; Erez J; Stoll HM
    Physiol Plant; 2014 Feb; 150(2):321-38. PubMed ID: 23992373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of silicate resupply to silicate-deprived Thalassiosira weissflogii (Bacillariophyceae) in stationary or senescent phase: short-term patterns of growth and cell death.
    Jiang Y; Yin K; Berges JA; Harrison PJ
    J Phycol; 2014 Jun; 50(3):602-6. PubMed ID: 26988331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae)(1).
    Sugie K; Yoshimura T
    J Phycol; 2013 Jun; 49(3):475-88. PubMed ID: 27007037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron bioavailability to phytoplankton: an empirical approach.
    Lis H; Shaked Y; Kranzler C; Keren N; Morel FM
    ISME J; 2015 Mar; 9(4):1003-13. PubMed ID: 25350155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ASSAY OPTIMIZATION AND REGULATION OF UREASE ACTIVITY IN TWO MARINE DIATOMS.
    Peers GS; Milligan AJ; Harrison PJ
    J Phycol; 2000 Jun; 36(3):523-528. PubMed ID: 29544013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE EFFECTS OF IRON AND COPPER AVAILABILITY ON THE COPPER STOICHIOMETRY OF MARINE PHYTOPLANKTON(1).
    Guo J; Lapi S; Ruth TJ; Maldonado MT
    J Phycol; 2012 Apr; 48(2):312-25. PubMed ID: 27009721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa.
    Fujii M; Rose AL; Omura T; Waite TD
    Environ Sci Technol; 2010 Mar; 44(6):1980-6. PubMed ID: 20175526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface shear rheological studies of marine phytoplankton cultures-Nitzschia closterium, Thalassiosira rotula, Thalassiosira punctigera and Phaeocystis sp.
    Kuhnhenn V; Krägel J; Horstmann U; Miller R
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):29-35. PubMed ID: 16387477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?
    van de Poll WH; Buma AG
    Photochem Photobiol Sci; 2009 Sep; 8(9):1295-301. PubMed ID: 19707617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
    Miao AJ; Wang WX
    Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.