BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 27007621)

  • 21. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery.
    Zhang P; Xu Q; Li X; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110396. PubMed ID: 31924025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery.
    Song WJ; Du JZ; Sun TM; Zhang PZ; Wang J
    Small; 2010 Jan; 6(2):239-46. PubMed ID: 19924738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery.
    Peng SF; Hsu HK; Lin CC; Cheng YM; Hsu KH
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28054985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folate-Mediated Targeted Delivery of siPLK1 by Leucine-Bearing Polyethylenimine.
    Hou L; Song Z; Xu Z; Wu Y; Shi W
    Int J Nanomedicine; 2020; 15():1397-1408. PubMed ID: 32184594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined Delivery of Temozolomide and siPLK1 Using Targeted Nanoparticles to Enhance Temozolomide Sensitivity in Glioma.
    Shi H; Sun S; Xu H; Zhao Z; Han Z; Jia J; Wu D; Lu J; Liu H; Yu R
    Int J Nanomedicine; 2020; 15():3347-3362. PubMed ID: 32494134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid.
    Tang Q; Liu J; Jiang Y; Zhang M; Mao L; Wang M
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46585-46590. PubMed ID: 31763806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine.
    Alshamsan A; Hamdy S; Samuel J; El-Kadi AO; Lavasanifar A; Uludağ H
    Biomaterials; 2010 Feb; 31(6):1420-8. PubMed ID: 19913908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery.
    Han L; Tang C; Yin C
    Biomaterials; 2015 Mar; 44():111-21. PubMed ID: 25617131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol).
    Liu L; Zheng M; Librizzi D; Renette T; Merkel OM; Kissel T
    Mol Pharm; 2016 Jan; 13(1):134-43. PubMed ID: 26641134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy.
    Cheng WJ; Chen LC; Ho HO; Lin HL; Sheu MT
    Int J Nanomedicine; 2018; 13():7079-7094. PubMed ID: 30464460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer.
    Zhao Z; Li Y; Shukla R; Liu H; Jain A; Barve A; Cheng K
    Theranostics; 2019; 9(15):4508-4524. PubMed ID: 31285776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier.
    Li JM; Zhang W; Su H; Wang YY; Tan CP; Ji LN; Mao ZW
    Int J Nanomedicine; 2015; 10():3147-62. PubMed ID: 25960653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Antitumor Activity of Folate-Conjugated Cholic Acid-Polyethylenimine Micelles for the Codelivery of Doxorubicin and siRNA to Colorectal Adenocarcinomas.
    Amjad MW; Amin MC; Katas H; Butt AM; Kesharwani P; Iyer AK
    Mol Pharm; 2015 Dec; 12(12):4247-58. PubMed ID: 26567518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.
    Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M
    Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-covalent Nanocomplexes of Folic Acid and Reducible Polyethylenimine for Survivin siRNA Delivery.
    Zheng B; Yang S; Wang M; Yang X; Teng L; Xie J; Teng L; Lee RJ
    Anticancer Res; 2015 Oct; 35(10):5433-41. PubMed ID: 26408706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery.
    Ma X; Zhao Y; Ng KW; Zhao Y
    Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy.
    Qu Q; Wang Y; Zhang L; Zhang X; Zhou S
    Small; 2016 Mar; 12(10):1378-90. PubMed ID: 26763197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mesoporous silica nanoparticle--PEI--fusogenic peptide system for siRNA delivery in cancer therapy.
    Li X; Chen Y; Wang M; Ma Y; Xia W; Gu H
    Biomaterials; 2013 Jan; 34(4):1391-401. PubMed ID: 23164421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells.
    Jere D; Jiang HL; Kim YK; Arote R; Choi YJ; Yun CH; Cho MH; Cho CS
    Int J Pharm; 2009 Aug; 378(1-2):194-200. PubMed ID: 19501140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering multifunctional bioactive citric acid-based nanovectors for intrinsical targeted tumor imaging and specific siRNA gene delivery in vitro/in vivo.
    Wang M; Guo Y; Xue Y; Niu W; Chen M; Ma PX; Lei B
    Biomaterials; 2019 Apr; 199():10-21. PubMed ID: 30731420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.