BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27007735)

  • 1. A Raman "spectroscopic clock" for bloodstain age determination: the first week after deposition.
    Doty KC; McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2016 Jun; 408(15):3993-4001. PubMed ID: 27007735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain.
    Weber A; Wójtowicz A; Wietecha-Posłuszny R; Lednev IK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age estimation of bloodstains based on Raman spectroscopy and chemometrics.
    Zhang R; Wang P; Chen J; Tian Y; Gao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122284. PubMed ID: 36592590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical profilometry for forensic bloodstain imaging.
    Vale B; Orr A; Elliott C; Stotesbury T
    Microsc Res Tech; 2023 Oct; 86(10):1401-1408. PubMed ID: 37133225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Selection and Rapid Characterization of Bloodstains on Different Substrates.
    Gautam R; Peoples D; Jansen K; O'Connor M; Thomas G; Vanga S; Pence IJ; Mahadevan-Jansen A
    Appl Spectrosc; 2020 Oct; 74(10):1238-1251. PubMed ID: 32519560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining Gender by Raman Spectroscopy of a Bloodstain.
    Sikirzhytskaya A; Sikirzhytski V; Lednev IK
    Anal Chem; 2017 Feb; 89(3):1486-1492. PubMed ID: 28208285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy.
    Fujihara J; Fujita Y; Yamamoto T; Nishimoto N; Kimura-Kataoka K; Kurata S; Takinami Y; Yasuda T; Takeshita H
    Int J Legal Med; 2017 Mar; 131(2):319-322. PubMed ID: 27262482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review.
    Sikirzhytski V; Sikirzhytskaya A; Lednev IK
    Appl Spectrosc; 2011 Nov; 65(11):1223-32. PubMed ID: 22054080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age estimation of bloodstains using smartphones and digital image analysis.
    Thanakiatkrai P; Yaodam A; Kitpipit T
    Forensic Sci Int; 2013 Dec; 233(1-3):288-97. PubMed ID: 24314532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis.
    Cavalcanti DR; Silva LP
    Forensic Sci Int; 2019 Aug; 301():254-262. PubMed ID: 31181409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species.
    Doty KC; Lednev IK
    Forensic Sci Int; 2018 Jan; 282():204-210. PubMed ID: 29223123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy.
    Lin H; Zhang Y; Wang Q; Li B; Huang P; Wang Z
    Sci Rep; 2017 Oct; 7(1):13254. PubMed ID: 29038589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination Between Infant and Adult Bloodstains Using Micro-Raman Spectroscopy: A Preliminary Study.
    Fujihara J; Nishimoto N; Yasuda T; Takeshita H
    J Forensic Sci; 2019 May; 64(3):698-701. PubMed ID: 30170335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bloodstain Metabolite Markers: Discovery and Validation for Estimating Age of Bloodstain within 7 Days.
    Lee YR; Lee S; Kwon S; Lee J; Kang HG
    Anal Chem; 2022 Oct; 94(39):13377-13384. PubMed ID: 36125254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a novel framework for bloodstains dating by Raman spectroscopy: How to avoid sample photodamage and subsampling errors.
    Menżyk A; Damin A; Martyna A; Alladio E; Vincenti M; Martra G; Zadora G
    Talanta; 2020 Mar; 209():120565. PubMed ID: 31892086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment.
    Lin H; Zhang Y; Wang Q; Li B; Fan S; Wang Z
    Int J Legal Med; 2018 May; 132(3):667-674. PubMed ID: 28821964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm.
    Cheng F; Li W; Ji Z; Li J; Hu W; Zhao M; Yu D; Simayijiang H; Yan J
    Forensic Sci Int Genet; 2023 Sep; 66():102910. PubMed ID: 37406538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The estimation of bloodstain age utilizing circRNAs and mRNAs biomarkers.
    Wei Y; Wang J; Wang Q; Cong B; Li S
    Forensic Sci Int; 2022 Sep; 338():111408. PubMed ID: 35901585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing menstrual bloodstain aging with fluorescence spectroscopy.
    Wójtowicz A; Weber A; Wietecha-Posłuszny R; Lednev IK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119172. PubMed ID: 33279406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BloodNet: An attention-based deep network for accurate, efficient, and costless bloodstain time since deposition inference.
    Li H; Shen C; Wang G; Sun Q; Yu K; Li Z; Liang X; Chen R; Wu H; Wang F; Wang Z; Lian C
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.