These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27007776)

  • 1. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Role of the Thoracolumbar Ligaments of the Posterior Ligamentous Complex: A Finite Element Study.
    Wu CC; Jin HM; Yan YZ; Chen J; Wang K; Wang JL; Zhang ZJ; Wu AM; Wang XY
    World Neurosurg; 2018 Apr; 112():e125-e133. PubMed ID: 29317367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical implications of lumbar spinal ligament transection.
    Von Forell GA; Bowden AE
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1685-95. PubMed ID: 23477405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model.
    Naserkhaki S; Arjmand N; Shirazi-Adl A; Farahmand F; El-Rich M
    J Biomech; 2018 Mar; 70():33-42. PubMed ID: 28549604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain.
    Robertson DJ; Von Forell GA; Alsup J; Bowden AE
    J Mech Behav Biomed Mater; 2013 Jul; 23():44-52. PubMed ID: 23660304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data.
    Damm N; Rockenfeller R; Gruber K
    Biomech Model Mechanobiol; 2020 Jun; 19(3):893-910. PubMed ID: 31792641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect.
    Robertson D; Willardson R; Parajuli D; Cannon A; Bowden AE
    J Mech Behav Biomed Mater; 2013 Jan; 17():34-43. PubMed ID: 23131792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties of human lumbar spine ligaments.
    Pintar FA; Yoganandan N; Myers T; Elhagediab A; Sances A
    J Biomech; 1992 Nov; 25(11):1351-6. PubMed ID: 1400536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study.
    Zander T; Dreischarf M; Timm AK; Baumann WW; Schmidt H
    J Biomech; 2017 Feb; 53():185-190. PubMed ID: 28010945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model.
    Gillespie KA; Dickey JP
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1208-16. PubMed ID: 15167660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability.
    Erbulut DU; Zafarparandeh I; Lazoglu I; Ozer AF
    Med Eng Phys; 2014 Jul; 36(7):915-21. PubMed ID: 24641811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria.
    Bono CM; Khandha A; Vadapalli S; Holekamp S; Goel VK; Garfin SR
    Spine (Phila Pa 1976); 2007 Feb; 32(4):417-22. PubMed ID: 17304131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit.
    Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine.
    Wong C; Gehrchen PM; Darvann T; Kiaer T
    IEEE Trans Med Imaging; 2003 Jun; 22(6):742-6. PubMed ID: 12872949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical modeling of spinal ligaments: finite element analysis of L4-L5 spinal segment.
    Hamidrad S; Abdollahi M; Badali V; Nikkhoo M; Naserkhaki S
    Comput Methods Biomech Biomed Engin; 2021 Dec; 24(16):1807-1818. PubMed ID: 34428998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous center of rotation behavior of the lumbar spine with ligament failure.
    Alapan Y; Demir C; Kaner T; Guclu R; Inceoğlu S
    J Neurosurg Spine; 2013 Jun; 18(6):617-26. PubMed ID: 23600587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.