BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 27007854)

  • 1. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
    Lee MH; Appleton KM; Strungs EG; Kwon JY; Morinelli TA; Peterson YK; Laporte SA; Luttrell LM
    Nature; 2016 Mar; 531(7596):665-8. PubMed ID: 27007854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation.
    Cao Y; Kumar S; Namkung Y; Gagnon L; Cho A; Laporte SA
    J Biol Chem; 2020 Sep; 295(38):13169-13180. PubMed ID: 32703898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
    Nuber S; Zabel U; Lorenz K; Nuber A; Milligan G; Tobin AB; Lohse MJ; Hoffmann C
    Nature; 2016 Mar; 531(7596):661-4. PubMed ID: 27007855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
    Paradis JS; Ly S; Blondel-Tepaz É; Galan JA; Beautrait A; Scott MG; Enslen H; Marullo S; Roux PP; Bouvier M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5160-8. PubMed ID: 26324936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-arrestins and G protein-coupled receptor trafficking.
    Tian X; Kang DS; Benovic JL
    Handb Exp Pharmacol; 2014; 219():173-86. PubMed ID: 24292830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
    Tóth AD; Prokop S; Gyombolai P; Várnai P; Balla A; Gurevich VV; Hunyady L; Turu G
    J Biol Chem; 2018 Jan; 293(3):876-892. PubMed ID: 29146594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
    Shukla AK; Violin JD; Whalen EJ; Gesty-Palmer D; Shenoy SK; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9988-93. PubMed ID: 18621717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling.
    Alvarez-Curto E; Inoue A; Jenkins L; Raihan SZ; Prihandoko R; Tobin AB; Milligan G
    J Biol Chem; 2016 Dec; 291(53):27147-27159. PubMed ID: 27852822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.
    Coffa S; Breitman M; Hanson SM; Callaway K; Kook S; Dalby KN; Gurevich VV
    PLoS One; 2011; 6(12):e28723. PubMed ID: 22174878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for engagement of β-arrestin2 by the transactivated EGFR in agonist-specific regulation of δ receptor activation of ERK1/2.
    Zhang LS; Wang YJ; Ju YY; Zan GY; Xu C; Hong MH; Wang YH; Chi ZQ; Liu JG
    Br J Pharmacol; 2015 Oct; 172(20):4847-63. PubMed ID: 26211551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Arrestins and G protein-coupled receptor trafficking.
    Kang DS; Tian X; Benovic JL
    Methods Enzymol; 2013; 521():91-108. PubMed ID: 23351735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2.
    Hamdan FF; Rochdi MD; Breton B; Fessart D; Michaud DE; Charest PG; Laporte SA; Bouvier M
    J Biol Chem; 2007 Oct; 282(40):29089-100. PubMed ID: 17675294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of β-arrestin2 at Thr
    Cassier E; Gallay N; Bourquard T; Claeysen S; Bockaert J; Crépieux P; Poupon A; Reiter E; Marin P; Vandermoere F
    Elife; 2017 Feb; 6():. PubMed ID: 28169830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors.
    Zhang X; Wang F; Chen X; Li J; Xiang B; Zhang YQ; Li BM; Ma L
    J Neurochem; 2005 Oct; 95(1):169-78. PubMed ID: 16181421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green fluorescent protein-tagged beta-arrestin translocation as a measure of G protein-coupled receptor activation.
    Ferguson SS; Caron MG
    Methods Mol Biol; 2004; 237():121-6. PubMed ID: 14501044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts.
    Jensen DD; Godfrey CB; Niklas C; Canals M; Kocan M; Poole DP; Murphy JE; Alemi F; Cottrell GS; Korbmacher C; Lambert NA; Bunnett NW; Corvera CU
    J Biol Chem; 2013 Aug; 288(32):22942-60. PubMed ID: 23818521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking.
    Kang DS; Tian X; Benovic JL
    Curr Opin Cell Biol; 2014 Apr; 27():63-71. PubMed ID: 24680432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrestin interactions with G protein-coupled receptors.
    Lohse MJ; Hoffmann C
    Handb Exp Pharmacol; 2014; 219():15-56. PubMed ID: 24292823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.
    Sánchez-Fernández G; Cabezudo S; García-Hoz C; Tobin AB; Mayor F; Ribas C
    PLoS One; 2013; 8(12):e84174. PubMed ID: 24358341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.