BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 27008018)

  • 21. Genomics Methods for
    Gilchrist MJ; Cho KWY; Veenstra GJC
    Cold Spring Harb Protoc; 2020 May; 2020(5):097915. PubMed ID: 32123020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.
    Kremsky I; Bellora N; Eyras E
    PLoS One; 2015; 10(7):e0132448. PubMed ID: 26207626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data.
    Ambrosini G; Dreos R; Kumar S; Bucher P
    BMC Genomics; 2016 Nov; 17(1):938. PubMed ID: 27863463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Candidate Functional Elements in the Genome from ChIP-seq Data.
    Marinov GK
    Methods Mol Biol; 2017; 1543():19-43. PubMed ID: 28349420
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 27. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-DNA binding in high-resolution.
    Mahony S; Pugh BF
    Crit Rev Biochem Mol Biol; 2015; 50(4):269-83. PubMed ID: 26038153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATACdb: a comprehensive human chromatin accessibility database.
    Wang F; Bai X; Wang Y; Jiang Y; Ai B; Zhang Y; Liu Y; Xu M; Wang Q; Han X; Pan Q; Li Y; Li X; Zhang J; Zhao J; Zhang G; Feng C; Zhu J; Li C
    Nucleic Acids Res; 2021 Jan; 49(D1):D55-D64. PubMed ID: 33125076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the chromatin landscape and sequence in determining cell type-specific genomic glucocorticoid receptor binding and gene regulation.
    Love MI; Huska MR; Jurk M; Schöpflin R; Starick SR; Schwahn K; Cooper SB; Yamamoto KR; Thomas-Chollier M; Vingron M; Meijsing SH
    Nucleic Acids Res; 2017 Feb; 45(4):1805-1819. PubMed ID: 27903902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq).
    Rhie SK; Schreiner S; Farnham PJ
    Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants.
    Li Z; Wang K
    Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors.
    Piper J; Assi SA; Cauchy P; Ladroue C; Cockerill PN; Bonifer C; Ott S
    BMC Genomics; 2015 Nov; 16():1000. PubMed ID: 26608661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
    Thompson B; Varticovski L; Baek S; Hager GL
    PLoS One; 2016; 11(2):e0148619. PubMed ID: 26890492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correcting nucleotide-specific biases in high-throughput sequencing data.
    Wang JR; Quach B; Furey TS
    BMC Bioinformatics; 2017 Aug; 18(1):357. PubMed ID: 28764645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity.
    Baek S; Goldstein I; Hager GL
    Cell Rep; 2017 May; 19(8):1710-1722. PubMed ID: 28538187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ChIPseek, a web-based analysis tool for ChIP data.
    Chen TW; Li HP; Lee CC; Gan RC; Huang PJ; Wu TH; Lee CY; Chang YF; Tang P
    BMC Genomics; 2014 Jun; 15(1):539. PubMed ID: 24974934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.