These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27008317)

  • 1. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy.
    Xia W; Zhang Q; Xu F; Sun L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9170-7. PubMed ID: 27008317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes.
    Su Q; Xie D; Zhang J; Du G; Xu B
    ACS Nano; 2013 Oct; 7(10):9115-21. PubMed ID: 24015669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode.
    Su Q; Yao L; Zhang J; Du G; Xu B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23062-8. PubMed ID: 26437926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe2O3 Nanocubes in Lithium-Ion Batteries.
    Ma X; Zhang M; Liang C; Li Y; Wu J; Che R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24191-6. PubMed ID: 26458272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy.
    Su Q; Wang S; Yao L; Li H; Du G; Ye H; Fang Y
    Sci Rep; 2016 Jun; 6():28197. PubMed ID: 27306189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving Fully Reversible Conversion in MoO
    Wang W; Qin J; Yin Z; Cao M
    ACS Nano; 2016 Nov; 10(11):10106-10116. PubMed ID: 27809481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide.
    Su Q; Wang S; Feng M; Du G; Xu B
    Sci Rep; 2017 Aug; 7(1):7275. PubMed ID: 28779168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2.
    Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW
    ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ TEM observation of buffering the anode volume change by using NiTi alloy during electrochemical lithiation/delithiation.
    Zhang LQ; Zhang JS; Shao Y; Jiang DQ; Yang F; Guo YP; Cui LS
    Nanotechnology; 2013 Aug; 24(32):325702. PubMed ID: 23863513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes.
    Su Q; Du G; Zhang J; Zhong Y; Xu B; Yang Y; Neupane S; Kadel K; Li W
    ACS Nano; 2013 Dec; 7(12):11379-87. PubMed ID: 24251977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ transmission electron microscopy observation of electrochemical behavior of CoS(2) in lithium-ion battery.
    Su Q; Xie J; Zhang J; Zhong Y; Du G; Xu B
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):3016-22. PubMed ID: 24433145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Cr-Doped MoO
    Lu H; Yang C; Li C; Wang L; Wang H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13405-13415. PubMed ID: 30893996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed.
    Su Q; Dong Z; Zhang J; Du G; Xu B
    Nanotechnology; 2013 Jun; 24(25):255705. PubMed ID: 23723187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy.
    Wang X; Tang DM; Li H; Yi W; Zhai T; Bando Y; Golberg D
    Chem Commun (Camb); 2012 May; 48(40):4812-4. PubMed ID: 22388332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires.
    Zhu J; Guo M; Liu Y; Shi X; Fan F; Gu M; Yang H
    ACS Appl Mater Interfaces; 2019 May; 11(19):17313-17320. PubMed ID: 31002223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery.
    Luo L; Wu J; Xu J; Dravid VP
    ACS Nano; 2014 Nov; 8(11):11560-6. PubMed ID: 25337887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.