These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27008420)

  • 1. Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine.
    Vilà S; Badosa E; Montesinos E; Planas M; Feliu L
    PLoS One; 2016; 11(3):e0151639. PubMed ID: 27008420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens.
    Oliveras À; Baró A; Montesinos L; Badosa E; Montesinos E; Feliu L; Planas M
    PLoS One; 2018; 13(7):e0201571. PubMed ID: 30052685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection.
    Güell I; Vilà S; Badosa E; Montesinos E; Feliu L; Planas M
    Biopolymers; 2017 May; 108(3):. PubMed ID: 28026016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient solid-phase strategy for the synthesis of antimicrobial cyclic lipopeptides.
    Vilà S; Badosa E; Montesinos E; Feliu L; Planas M
    Org Biomol Chem; 2013 May; 11(20):3365-74. PubMed ID: 23563492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens.
    Oliveras À; Moll L; Riesco-Llach G; Tolosa-Canudas A; Gil-Caballero S; Badosa E; Bonaterra A; Montesinos E; Planas M; Feliu L
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34205705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrashort Cationic Lipopeptides-Effect of
    Neubauer D; Jaśkiewicz M; Bauer M; Gołacki K; Kamysz W
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases.
    Camó C; Bonaterra A; Badosa E; Baró A; Montesinos L; Montesinos E; Planas M; Feliu L
    Peptides; 2019 Feb; 112():85-95. PubMed ID: 30508634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription.
    Dong X; Zhou Z; Saremi B; Helmbrecht A; Wang Z; Loor JJ
    J Dairy Sci; 2018 Feb; 101(2):1708-1718. PubMed ID: 29248224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria.
    Camó C; Torné M; Besalú E; Rosés C; Cirac AD; Moiset G; Badosa E; Bardají E; Montesinos E; Planas M; Feliu L
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29072606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of novel fatty-acyl gratisin derivatives.
    Tamaki M; Harada T; Fujinuma K; Takanashi K; Shindo M; Kimura M; Uchida Y
    Chem Pharm Bull (Tokyo); 2012; 60(6):743-6. PubMed ID: 22689425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.
    Jenner ZB; Crittenden CM; Gonzalez M; Brodbelt JS; Bruns KA
    Biopolymers; 2017 May; 108(3):. PubMed ID: 28073163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action.
    Avrahami D; Shai Y
    Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Solution-Phase Synthesis of Membrane-Targeting Lipopeptides with Selective Antibacterial Activity.
    Konai MM; Adhikary U; Haldar J
    Chemistry; 2017 Sep; 23(52):12853-12860. PubMed ID: 28718982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of plant pathogens by Bacillus species.
    Fira D; Dimkić I; Berić T; Lozo J; Stanković S
    J Biotechnol; 2018 Nov; 285():44-55. PubMed ID: 30172784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi.
    Rautenbach M; Troskie AM; Vosloo JA; Dathe ME
    Biochimie; 2016 Nov; 130():122-131. PubMed ID: 27328781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the primary structure of bovine high-molecular-weight kininogen. Amino acid sequence of a fragment ("histidine-rich peptide") released by plasma kallikrein.
    Han YN; Komiya M; Iwanaga S; Suzuki T
    J Biochem; 1975 Jan; 77(1?):55-68. PubMed ID: 1169237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.
    Sánchez-Gómez S; Ferrer-Espada R; Stewart PS; Pitts B; Lohner K; Martínez de Tejada G
    BMC Microbiol; 2015 Jul; 15():137. PubMed ID: 26149536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity of short, synthetic cationic lipopeptides.
    Laverty G; McLaughlin M; Shaw C; Gorman SP; Gilmore BF
    Chem Biol Drug Des; 2010 Jun; 75(6):563-9. PubMed ID: 20374251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria.
    Monroc S; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E
    Peptides; 2006 Nov; 27(11):2567-74. PubMed ID: 16730857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.