These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27008630)

  • 21. Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models.
    Marklund EG; Mahmutovic A; Berg OG; Hammar P; van der Spoel D; Fange D; Elf J
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19796-801. PubMed ID: 24222688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor.
    Garza de Leon F; Sellars L; Stracy M; Busby SJW; Kapanidis AN
    Biophys J; 2017 Apr; 112(7):1316-1327. PubMed ID: 28402875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion.
    Vanzi F; Broggio C; Sacconi L; Pavone FS
    Nucleic Acids Res; 2006; 34(12):3409-20. PubMed ID: 16835309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated pressure changes in LacI suggest a link between hydration and functional conformational changes.
    Kariyawasam NL; Ploetz EA; Swint-Kruse L; Smith PE
    Biophys Chem; 2024 Jan; 304():107126. PubMed ID: 37924711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single molecule study of non-specific binding kinetics of LacI in mammalian cells.
    Caccianini L; Normanno D; Izeddin I; Dahan M
    Faraday Discuss; 2015; 184():393-400. PubMed ID: 26387491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon.
    Abo T; Inada T; Ogawa K; Aiba H
    EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays.
    Hirsh AD; Lillian TD; Lionberger TA; Perkins NC
    Biophys J; 2011 Aug; 101(3):718-26. PubMed ID: 21806940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.
    Ohyama T; Hayakawa M; Nishikawa S; Kurita N
    J Comput Chem; 2011 Jun; 32(8):1661-70. PubMed ID: 21328406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-molecule spectroscopic determination of lac repressor-DNA loop conformation.
    Morgan MA; Okamoto K; Kahn JD; English DS
    Biophys J; 2005 Oct; 89(4):2588-96. PubMed ID: 16085773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding.
    Hong J; Capp MW; Saecker RM; Record MT
    Biochemistry; 2005 Dec; 44(51):16896-911. PubMed ID: 16363803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The natural DNA bending angle in the lac repressor headpiece-O1 operator complex is determined by protein-DNA contacts and water release.
    Barr D; van der Vaart A
    Phys Chem Chem Phys; 2012 Feb; 14(6):2070-7. PubMed ID: 22234444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of cyclic AMP receptor protein-based artificial transcription factor for intensifying gene expression.
    Zhao P; Wang W; Tian P
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1673-1685. PubMed ID: 29335877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized expression and purification of biophysical quantities of Lac repressor and Lac repressor regulatory domain.
    Stetz MA; Carter MV; Wand AJ
    Protein Expr Purif; 2016 Jul; 123():75-82. PubMed ID: 27064119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli.
    Becker NA; Maher LJ
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7177-82. PubMed ID: 26039992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins.
    Bondos SE; Swint-Kruse L; Matthews KS
    J Biol Chem; 2015 Oct; 290(41):24669-77. PubMed ID: 26342073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hinge-helix formation and DNA bending in various lac repressor-operator complexes.
    Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R
    EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Backbone and side chain dynamics of lac repressor headpiece (1-56) and its complex with DNA.
    Slijper M; Boelens R; Davis AL; Konings RN; van der Marel GA; van Boom JH; Kaptein R
    Biochemistry; 1997 Jan; 36(1):249-54. PubMed ID: 8993340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring LacI-DNA dynamics by multiscale simulations using the SIRAH force field.
    Machado MR; Pantano S
    J Chem Theory Comput; 2015 Oct; 11(10):5012-23. PubMed ID: 26574286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.