These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27008783)

  • 41. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River.
    Royer TV; David MB; Gentry LE
    Environ Sci Technol; 2006 Jul; 40(13):4126-31. PubMed ID: 16856726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concentration-discharge relationships derived from a larger regional dataset as a tool for watershed management.
    D'Amario SC; Wilson HF; Xenopoulos MA
    Ecol Appl; 2021 Dec; 31(8):e02447. PubMed ID: 34448320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupled cycles of dissolved oxygen and nitrous oxide in rivers along a trophic gradient in southern Ontario, Canada.
    Rosamond MS; Thuss SJ; Schiff SL; Elgood RJ
    J Environ Qual; 2011; 40(1):256-70. PubMed ID: 21488515
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed.
    Taylor PG; Wieder WR; Weintraub S; Cohen S; Cleveland CC; Townsend AR
    Ecology; 2015 May; 96(5):1229-41. PubMed ID: 26236837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural and human influences on nutrient transport through a small subtropical Chinese estuary.
    Kaiser D; Unger D; Qiu G; Zhou H; Gan H
    Sci Total Environ; 2013 Apr; 450-451():92-107. PubMed ID: 23467180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary productivity and climate change in Austrian lowland rivers.
    Zoboli O; Schilling K; Ludwig AL; Kreuzinger N; Zessner M
    Water Sci Technol; 2018 Jan; 77(1-2):417-425. PubMed ID: 29377826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stoichiometry and daily rhythms: experimental evidence shows nutrient limitation decouples N uptake from photosynthesis.
    Chamberlin CA; Bernhardt ES; Rosi EJ; Heffernan JB
    Ecology; 2019 Oct; 100(10):e02822. PubMed ID: 31310322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change.
    Lucas RW; Sponseller RA; Gundale MJ; Stendahl J; Fridman J; Högberg P; Laudon H
    Ecol Appl; 2016 Mar; 26(2):545-56. PubMed ID: 27209794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Characteristics of the Dissolved Nitrous Oxide (N
    Tian LL; Wang Z; Hu L; Ren GQ; Zhu B
    Huan Jing Ke Xue; 2019 Apr; 40(4):1939-1949. PubMed ID: 31087940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shade, light, and stream temperature responses to riparian thinning in second-growth redwood forests of northern California.
    Roon DA; Dunham JB; Groom JD
    PLoS One; 2021; 16(2):e0246822. PubMed ID: 33592001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrological and hydrochemical behavior of a riparian zone in a high-order flatland stream.
    Veizaga EA; Ocampo CJ; Rodríguez L
    Environ Monit Assess; 2018 Dec; 191(1):10. PubMed ID: 30535811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Over-parameterised, uncertain 'mathematical marionettes' - how can we best use catchment water quality models? An example of an 80-year catchment-scale nutrient balance.
    Wade AJ; Jackson BM; Butterfield D
    Sci Total Environ; 2008 Aug; 400(1-3):52-74. PubMed ID: 18538825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial and seasonal variations in stream water delta34S-dissolved organic matter in northern Sweden.
    Giesler R; Björkvald L; Laudon H; Mörth CM
    Environ Sci Technol; 2009 Jan; 43(2):447-52. PubMed ID: 19238978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river.
    Tank JL; Rosi-Marshall EJ; Baker MA; Hall RO
    Ecology; 2008 Oct; 89(10):2935-45. PubMed ID: 18959330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of stream water carbon dynamics and export in the carbon balance of a tropical seasonal rainforest, southwest China.
    Zhou WJ; Zhang YP; Schaefer DA; Sha LQ; Deng Y; Deng XB; Dai KJ
    PLoS One; 2013; 8(2):e56646. PubMed ID: 23437195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Putah Creek hydrology affecting riparian cottonwood and willow tree survival.
    Grismer ME
    Environ Monit Assess; 2018 Jul; 190(8):458. PubMed ID: 29995189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting stream N and P concentrations from loads and catchment characteristics at regional scale: a concentration ratio method.
    Oehler F; Elliott AH
    Sci Total Environ; 2011 Nov; 409(24):5392-402. PubMed ID: 21962928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks.
    Sivirichi GM; Kaushal SS; Mayer PM; Welty C; Belt KT; Newcomer TA; Newcomb KD; Grese MM
    J Environ Monit; 2011 Feb; 13(2):288-303. PubMed ID: 21116542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of nitrogen and dissolved organic carbon at the Hubbard brook experimental forest.
    Dittman JA; Driscoll CT; Groffman PM; Fahey TJ
    Ecology; 2007 May; 88(5):1153-66. PubMed ID: 17536402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.