These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27008912)

  • 1. Energy spectra and optical transitions in germanene quantum dots.
    Herath TM; Apalkov V
    J Phys Condens Matter; 2016 Apr; 28(16):165301. PubMed ID: 27008912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantum dot in topological insulator nanofilm.
    Herath TM; Hewageegana P; Apalkov V
    J Phys Condens Matter; 2014 Mar; 26(11):115302. PubMed ID: 24590177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size- and Temperature-Dependent Intraband Optical Properties of Heavily n-Doped PbS Colloidal Quantum Dot Solid-State Films.
    Ramiro I; Kundu B; Dalmases M; Özdemir O; Pedrosa M; Konstantatos G
    ACS Nano; 2020 Jun; 14(6):7161-7169. PubMed ID: 32396326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent two-photon absorption in circular graphene quantum dots.
    Feng X; Li X; Li Z; Liu Y
    Opt Express; 2016 Feb; 24(3):2877-84. PubMed ID: 26906856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band offsets and photocurrent spectroscopy of Si/Ge heterostructures with quantum dots.
    Kondratenko SV; Nikolenko AS; Vakulenko OV; Valakh MY; Yukhymchuk VO; Dvurechenskii AV; Nikiforov AI
    Nanotechnology; 2008 Apr; 19(14):145703. PubMed ID: 21817769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Properties of Conical Quantum Dot: Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence.
    Gavalajyan SP; Mantashian GA; Kharatyan GT; Sarkisyan HA; Mantashyan PA; Baskoutas S; Hayrapetyan DB
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J
    ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements.
    Segets D; Lucas JM; Klupp Taylor RN; Scheele M; Zheng H; Alivisatos AP; Peukert W
    ACS Nano; 2012 Oct; 6(10):9021-32. PubMed ID: 22984808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-Doping of Quantum Dots by Lithium Ion Intercalation.
    Chang WJ; Park KY; Zhu Y; Wolverton C; Hersam MC; Weiss EA
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36523-36529. PubMed ID: 32666788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an External Magnetic Field on the Interband and Intraband Optical Properties of an Asymmetric Biconvex Lens-Shaped Quantum Dot.
    Mkrtchyan MA; Hayrapetyan DB; Kazaryan EM; Sarkisyan HA; Vinnichenko MY; Shalygin VA; Firsov DA; Petrosyan LS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field-diversified optical properties of bilayer silicene.
    Shih PH; Do TN; Gumbs G; Pham HD; Lin MF
    Opt Lett; 2019 Oct; 44(19):4721-4724. PubMed ID: 31568426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of charging and perpendicular electric field on the properties of silicene and germanene.
    Gürel HH; Özçelik VO; Ciraci S
    J Phys Condens Matter; 2013 Jul; 25(30):305007. PubMed ID: 23838156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helical edge states in silicene and germanene nanorings in perpendicular magnetic field.
    Jakovljević DZ; Grujić MM; Tadić MŽ; Peeters FM
    J Phys Condens Matter; 2018 Jan; 30(3):035301. PubMed ID: 29188792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Theoretical Study of Interband Absorption Spectra of Spherical Sector Quantum Dots under the Effect of a Powerful Resonant Laser.
    Hien LTD; Bao LTN; Phuoc DD; Kim HJ; Duque CA; Thao DN
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric- and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots.
    Li LL; Moldovan D; Xu W; Peeters FM
    Nanotechnology; 2017 Feb; 28(8):085702. PubMed ID: 28045010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals.
    Fischer SA; Crotty AM; Kilina SV; Ivanov SA; Tretiak S
    Nanoscale; 2012 Feb; 4(3):904-14. PubMed ID: 22170563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous absorption background and decoherence in quantum dots.
    Vasanelli A; Ferreira R; Bastard G
    Phys Rev Lett; 2002 Nov; 89(21):216804. PubMed ID: 12443442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.