These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27008981)

  • 1. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors.
    Wu G; Feng P; Wan X; Zhu L; Shi Y; Wan Q
    Sci Rep; 2016 Mar; 6():23578. PubMed ID: 27008981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing.
    Monalisha P; Kumar APS; Wang XR; Piramanayagam SN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes.
    Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J
    Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Three-Terminal Artificial Synapses: From Device to System.
    Han H; Yu H; Wei H; Gong J; Xu W
    Small; 2019 Aug; 15(32):e1900695. PubMed ID: 30972944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.
    Wan CJ; Zhu LQ; Zhou JM; Shi Y; Wan Q
    Nanoscale; 2014 May; 6(9):4491-7. PubMed ID: 24643320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A MoS
    Wang S; Chen C; Yu Z; He Y; Chen X; Wan Q; Shi Y; Zhang DW; Zhou H; Wang X; Zhou P
    Adv Mater; 2019 Jan; 31(3):e1806227. PubMed ID: 30485567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.
    Wan CJ; Liu YH; Zhu LQ; Feng P; Shi Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9762-8. PubMed ID: 27007748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics.
    Kim MK; Lee JS
    ACS Nano; 2018 Feb; 12(2):1680-1687. PubMed ID: 29357225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.
    Kim SJ; Jeon DB; Park JH; Ryu MK; Yang JH; Hwang CS; Kim GH; Yoon SM
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4869-74. PubMed ID: 25679117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.
    Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials.
    Park Y; Lee JS
    ACS Nano; 2017 Sep; 11(9):8962-8969. PubMed ID: 28837313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported Lipid Bilayers Coupled to Organic Neuromorphic Devices Modulate Short-Term Plasticity in Biomimetic Synapses.
    Lubrano C; Bruno U; Ausilio C; Santoro F
    Adv Mater; 2022 Apr; 34(15):e2110194. PubMed ID: 35174916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing.
    Yu R; Li E; Wu X; Yan Y; He W; He L; Chen J; Chen H; Guo T
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15446-15455. PubMed ID: 32153175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.
    Zhao Y; Jiang J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8003-8015. PubMed ID: 30189917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial synapse network on inorganic proton conductor for neuromorphic systems.
    Zhu LQ; Wan CJ; Guo LQ; Shi Y; Wan Q
    Nat Commun; 2014; 5():3158. PubMed ID: 24452193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coexistence of threshold and memory switching characteristics of ALD HfO
    Abbas H; Abbas Y; Hassan G; Sokolov AS; Jeon YR; Ku B; Kang CJ; Choi C
    Nanoscale; 2020 Jul; 12(26):14120-14134. PubMed ID: 32597451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.