BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 27008999)

  • 21. Discovering conserved insect microRNAs from expressed sequence tags.
    Jia Q; Lin K; Liang J; Yu L; Li F
    J Insect Physiol; 2010 Dec; 56(12):1763-9. PubMed ID: 20655920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants.
    Kaufmann K; Melzer R; Theissen G
    Gene; 2005 Mar; 347(2):183-98. PubMed ID: 15777618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies.
    Smaczniak C; Immink RG; Angenent GC; Kaufmann K
    Development; 2012 Sep; 139(17):3081-98. PubMed ID: 22872082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fundamental plant evolutionary problem: the origin of land-plant sporophyte; is a new hypothesis possible?
    Bennici A
    Riv Biol; 2005; 98(3):469-80. PubMed ID: 16440282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of a gametophyte-specific cDNA encoding a lipoxygenase from the red alga Porphyra purpurea.
    Liu QY; Reith ME
    Mol Mar Biol Biotechnol; 1994 Aug; 3(4):206-9. PubMed ID: 7528079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PHYCOBILIN CONTENT OF THE CONCHOCELIS PHASE OF ALASKAN PORPHYRA (BANGIALES, RHODOPHYTA) SPECIES: RESPONSES TO ENVIRONMENTAL VARIABLES(1).
    Lin R; Stekoll MS
    J Phycol; 2011 Feb; 47(1):208-14. PubMed ID: 27021725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural features and gene-expression profiles of actin homologs in Porphyra yezoensis (Rhodophyta).
    Kitade Y; Nakamura M; Uji T; Fukuda S; Endo H; Saga N
    Gene; 2008 Oct; 423(1):79-84. PubMed ID: 18678234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra.
    Kong F; Sun P; Cao M; Wang L; Mao Y
    Mitochondrial DNA; 2014 Oct; 25(5):335-6. PubMed ID: 23841614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular timescale of eukaryote evolution and the rise of complex multicellular life.
    Hedges SB; Blair JE; Venturi ML; Shoe JL
    BMC Evol Biol; 2004 Jan; 4():2. PubMed ID: 15005799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis.
    Colombo M; Masiero S; Vanzulli S; Lardelli P; Kater MM; Colombo L
    Plant J; 2008 Jun; 54(6):1037-48. PubMed ID: 18346189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep sequencing of small RNA libraries reveals dynamic expression patterns of microRNAs in multiple developmental stages of Bactrocera dorsalis.
    Huang Y; Dou W; Liu B; Wei D; Liao CY; Smagghe G; Wang JJ
    Insect Mol Biol; 2014 Oct; 23(5):656-67. PubMed ID: 24957108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis.
    Cheng G; Jin Y
    Parasitology; 2012 Apr; 139(5):669-79. PubMed ID: 22309492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development.
    Cseke LJ; Ravinder N; Pandey AK; Podila GK
    Gene; 2007 Apr; 391(1-2):209-22. PubMed ID: 17331677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana.
    He C; Sommer H; Grosardt B; Huijser P; Saedler H
    Mol Biol Evol; 2007 May; 24(5):1229-41. PubMed ID: 17339635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analysis of the small RNA transcriptome of four developmental stages of the citrus red mite (Panonychus citri).
    Liu B; Dou W; Ding TB; Zhong R; Liao CY; Xia WK; Wang JJ
    Insect Mol Biol; 2014 Apr; 23(2):216-29. PubMed ID: 24330037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IDENTIFICATION OF CROSS-FERTILIZED CONCHOCELIS USING CLEAVED AMPLIFIED POLYMORPHIC SEQUENCE MARKERS IN CROSS-EXPERIMENTS OF PORPHYRA YEZOENSIS (BANGIALES, RHODOPHYTA)(1).
    Park EJ; Fukuda S; Endo H; Kitade Y; Saga N
    J Phycol; 2008 Apr; 44(2):331-4. PubMed ID: 27041189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal variation in heteroside concentrations of field-collected Porphyra species (Rhodophyta) from different biogeographic regions.
    Karsten U
    New Phytol; 1999 Sep; 143(3):561-571. PubMed ID: 33862893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Analysis of MicroRNAs between Sporophyte and Gametophyte of Porphyra yezoensis.
    He L; Huang A; Shen S; Niu J; Wang G
    Comp Funct Genomics; 2012; 2012():912843. PubMed ID: 23055822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ANALYSIS OF SPATIAL AND TEMPORAL DIVERSITY AND DISTRIBUTION OF PORPHYRA (RHODOPHYTA) IN SOUTHEASTERN NEW ZEALAND SUPPORTED BY THE USE OF MOLECULAR TOOLS(1).
    Schweikert K; Sutherland JE; Burritt DJ; Hurd CL
    J Phycol; 2012 Jun; 48(3):530-8. PubMed ID: 27011068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.